Solveeit Logo

Question

Question: The number of solutions in \[x \in [0,2\pi ]\] for which \(|\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} -...

The number of solutions in x[0,2π]x \in [0,2\pi ] for which 2sin4x+18cos2x2cos4x+18sin2x=1|\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} | = 1 is
A) 4
B) 2
C) 6
D) 8

Explanation

Solution

This is a particular problem of trigonometry where we have to all the value of x[0,2π]x \in [0,2\pi ]
So we first solve modulus function so if x=a|x| = a then it become x=±ax = \pm a and we use some trigonometric relation
1.cos2xsin2x=cos2x1.{\cos ^2}x - {\sin ^2}x = \cos 2x
2.sin2x+cos2x=12.{\sin ^2}x + {\cos ^2}x = 1 and we rearrange the whole equation by squaring both sides and after that we use these formulas to find our answer.

Complete step-by-step answer:
Step 1. Solve modulus function first
2sin4x+18cos2x2cos4x+18sin2x=±1\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} = \pm 1
Now doing rearrangements we get
2sin4x+18cos2x=±1+2cos4x+18sin2x\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} = \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
Now by taking square both side we get
(2sin4x+18cos2x)2=(±1+2cos4x+18sin2x)2{(\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} )^2} = {( \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} )^2}
Now (a±b)2=a2+b2±2ab{(a \pm b)^2} = {a^2} + {b^2} \pm 2ab
By using this we can write
2sin4x+18cos2x=1+2cos4x+18sin2x±22cos4x+18sin2x2{\sin ^4}x + 18{\cos ^2}x = 1 + 2{\cos ^4}x + 18{\sin ^2}x \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
Now rearranging this equation
2sin4x2cos4x+18cos2x18sin2x=1±22cos4x+18sin2x2{\sin ^4}x - 2{\cos ^4}x + 18{\cos ^2}x - 18{\sin ^2}x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
Now use some formula
a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b) and cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x
From this we get
2(sin2xcos2x)(sin2x+cos2x)+18(cos2xsin2x)=1±22cos4x+18sin2x2({\sin ^2}x - {\cos ^2}x)({\sin ^2}x + {\cos ^2}x) + 18({\cos ^2}x - {\sin ^2}x) = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
As we know sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
Now 2cos2x+18cos2x=1±22cos4x+18sin2x- 2\cos 2x + 18\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
From this we can write
16cos2x=1±22cos4x+18sin2x16\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x}
Now we use 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x and 2sin2x=1cos2x2{\sin ^2}x = 1 - \cos 2x
16cos2x=1±212(cos2x+1)2+9(1cos2x)16\cos 2x = 1 \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)}
Now again we do rearrangements of terms
16cos2x1=±212(cos2x+1)2+9(1cos2x)16\cos 2x - 1 = \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)}
Now take square both side
(16cos2x1)2=412(cos22x+1+2cos2x)+99cos2x{(16\cos 2x - 1)^2} = 4\\{ \dfrac{1}{2}({\cos ^2}2x + 1 + 2\cos 2x) + 9 - 9\cos 2x\\}
Now open square and multiply 4 inside the curly braces
256cos22x+132cos2x=2cos22x+2+4cos2x+3636cos2x256{\cos ^2}2x + 1 - 32\cos 2x = 2{\cos ^2}2x + 2 + 4\cos 2x + 36 - 36\cos 2x
Now after rearranging we get
254cos22x=37254{\cos ^2}2x = 37
We can write this as
cos2x=±37254\cos 2x = \pm \sqrt {\dfrac{{37}}{{254}}}
Now
2x=cos1(±37254)2x = {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )
x=12×cos1(±37254)x = \dfrac{1}{2} \times {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} ) And
Now as question said x[0,2π]x \in [0,2\pi ]
In this interval cosx\cos x take two time negative value and two time positive value
When x[0,π2]x \in \left[ {0,\dfrac{\pi }{2}} \right] , cosx\cos x take positive value so here x=12×cos1(37254)x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)
When x[π2,π]x \in \left[ {\dfrac{\pi }{2},\pi } \right], cosx\cos x take negative value so here x=12×cos1(37254)x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)
And also when x[π,2π3]x \in \left[ {\pi ,\dfrac{{2\pi }}{3}} \right], cosx\cos x take positive value so here x=12×cos1(37254)x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)
And also when x[2π3,2π]x \in \left[ {\dfrac{{2\pi }}{3},2\pi } \right], cosx\cos x take negative value so here x=12×cos1(37254)x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)
From this we can say total 4 solution we have in x[0,2π]x \in \left[ {0,2\pi } \right]
So our answer is 4.
Option A is the correct answer.

Note: We have to remember that cosθ\cos \theta taking positive value in first and fourth coordinate and negative value in second and third coordinate.
First Quadrant- All are positive Second Quadrant- Sin and Cosec are positive Third Quadrant- Tan and Cot are positive Fourth Quadrant- Cos and Sec are positive.