Solveeit Logo

Question

Question: The number of solution of the equation \[\sin \left( {9x} \right) + \sin \left( {3x} \right) = 0\]in...

The number of solution of the equation sin(9x)+sin(3x)=0\sin \left( {9x} \right) + \sin \left( {3x} \right) = 0in the closed interval [0,2π]\left[ {0,2\pi } \right] is
A) 7
B) 13
C) 19
D) 25

Explanation

Solution

In this question first use the formula for sin3x\sin 3xto simplify sin 9x in the given equation after that solve the equation in order to get the different values of x in the given range.

Complete step by step solution:
sin(9x)+sin(3x)=0\sin \left( {9x} \right) + \sin \left( {3x} \right) = 0,x[0,2π]x \in \left[ {0,2\pi } \right] (1)
Now we use the formula of sin3x=3sinx4sin3x\sin 3x = 3\sin x - 4{\sin ^3}x,
On sin 9x we get, sin9x=3sin3x4sin33x\sin 9x = 3\sin 3x - 4{\sin ^3}3x,
Substituting the value of sin9x in (1) we get,
3sin3x4sin33x+sin3x=0\Rightarrow 3\sin 3x - 4{\sin ^3}3x + \sin 3x = 0
4sin3x4sin33x=0\Rightarrow 4\sin 3x - 4{\sin ^3}3x = 0
Taking 4 sin 3x common, we get,
4sin3x(1sin23x)=0\Rightarrow 4\sin 3x\left( {1 - {{\sin }^2}3x} \right) = 0
Now we have,
4sin3x=0\Rightarrow 4\sin 3x = 0Or (1sin23x)=0\left( {1 - {{\sin }^2}3x} \right) = 0
4sin3x=0\Rightarrow 4\sin 3x = 0 Or cos2x{\cos ^2}x= 0 [cos2x+sin2x=1 1sin2x=cos2x ] \ldots \left[ \because {\cos ^2}x + {\sin ^2}x = 1 \\\ \Rightarrow 1 - {\sin ^2}x = {\cos ^2}x \\\ \right]
4sin3x=0\Rightarrow 4\sin 3x = 0 Or cosx=0\cos x = 0
3x=nπ,nI\Rightarrow 3x = n\pi ,n \in IOr 3x=kπ+π2,kI3x = k\pi + \dfrac{\pi }{2},k \in I
\ldots [zero of a sine function is nπ;nIn\pi ;n \in Iand zeros of cosine function is (kπ+1)π2;kI\left( {k\pi + 1} \right)\dfrac{\pi }{2};k \in I ]
x=nπ3,nI\Rightarrow x = \dfrac{{n\pi }}{3},n \in IOr x=kπ3+π6,kIx = \dfrac{{k\pi }}{3} + \dfrac{\pi }{6},k \in I
x=nπ3,nI\Rightarrow x = \dfrac{{n\pi }}{3},n \in IOr x=2kπ6+π6,kIx = \dfrac{{2k\pi }}{6} + \dfrac{\pi }{6},k \in I
First consider x=nπ3,nIx = \dfrac{{n\pi }}{3},n \in I
For n = 0 we have
x=0x = 0
For n=1
x=(1)π3=π3x = \dfrac{{\left( 1 \right)\pi }}{3} = \dfrac{\pi }{3}
For n=2
x=(2)π3=2π3x = \dfrac{{\left( 2 \right)\pi }}{3} = \dfrac{{2\pi }}{3}
For n=3
x=(3)π3=πx = \dfrac{{\left( 3 \right)\pi }}{3} = \pi
For n=4
x=(4)π3=4π3x = \dfrac{{\left( 4 \right)\pi }}{3} = \dfrac{{4\pi }}{3}
For n=5
x=(5)π3=5π3x = \dfrac{{\left( 5 \right)\pi }}{3} = \dfrac{{5\pi }}{3}
For n=6
x=(6)π3=2πx = \dfrac{{\left( 6 \right)\pi }}{3} = 2\pi
Hence, we have
x = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi $$$$ \ldots \left[ 1 \right]
Now, consider x=2kπ6+π6,kIx = \dfrac{{2k\pi }}{6} + \dfrac{\pi }{6},k \in I
For k=0
x=2(0)π6+π6x = \dfrac{{2\left( 0 \right)\pi }}{6} + \dfrac{\pi }{6}
x=π6\Rightarrow x = \dfrac{\pi }{6}
For k=1
x=2(1)π6+π6=3π6x = \dfrac{{2\left( 1 \right)\pi }}{6} + \dfrac{\pi }{6} = \dfrac{{3\pi }}{6}
x=π2\Rightarrow x = \dfrac{\pi }{2}
For k=2
x=2(2)π6+π6=4π6+π6x = \dfrac{{2\left( 2 \right)\pi }}{6} + \dfrac{\pi }{6} = \dfrac{{4\pi }}{6} + \dfrac{\pi }{6}
x=5π6\Rightarrow x = \dfrac{{5\pi }}{6}
For k=3
x=2(3)π6+π6=6π6+π6x = \dfrac{{2\left( 3 \right)\pi }}{6} + \dfrac{\pi }{6} = \dfrac{{6\pi }}{6} + \dfrac{\pi }{6}
x=7π6\Rightarrow x = \dfrac{{7\pi }}{6}
For k=4
x=2(4)π6+π6=8π6+π6x = \dfrac{{2\left( 4 \right)\pi }}{6} + \dfrac{\pi }{6} = \dfrac{{8\pi }}{6} + \dfrac{\pi }{6}
x=9π6\Rightarrow x = \dfrac{{9\pi }}{6}
x=3π2\Rightarrow x = \dfrac{{3\pi }}{2}
For k=5
x=2(5)π6+π6=10π6+π6x = \dfrac{{2\left( 5 \right)\pi }}{6} + \dfrac{\pi }{6} = \dfrac{{10\pi }}{6} + \dfrac{\pi }{6}
x=11π6\Rightarrow x = \dfrac{{11\pi }}{6}
Hence, we have
x = \dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}$$$$ \ldots \left[ 2 \right]
From 1 and 2 we get the values of x are as follows:
\left\\{ {0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi ,\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}} \right\\}
So the total solutions are \left\\{ {0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi ,\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}} \right\\}
Thus, the total numbers of solution are 13
Hence, option B. 13 is the correct answer.

Note: sine and cosine function are periodic with a period of 2π2\pi . The domain of each function is (,)\left( { - \infty ,\infty } \right)and range is [1,1]\left[ { - 1,1} \right]. The zeros of sine function are nπ;nIn\pi ;n \in I and zeros of cosine function are (2n+1)π2;nI\left( {2n + 1} \right)\dfrac{\pi }{2};n \in I.