Question
Question: The number of solution of the equation \[\sin \left( {9x} \right) + \sin \left( {3x} \right) = 0\]in...
The number of solution of the equation sin(9x)+sin(3x)=0in the closed interval [0,2π] is
A) 7
B) 13
C) 19
D) 25
Solution
In this question first use the formula for sin3xto simplify sin 9x in the given equation after that solve the equation in order to get the different values of x in the given range.
Complete step by step solution:
sin(9x)+sin(3x)=0,x∈[0,2π] (1)
Now we use the formula of sin3x=3sinx−4sin3x,
On sin 9x we get, sin9x=3sin3x−4sin33x,
Substituting the value of sin9x in (1) we get,
⇒3sin3x−4sin33x+sin3x=0
⇒4sin3x−4sin33x=0
Taking 4 sin 3x common, we get,
⇒4sin3x(1−sin23x)=0
Now we have,
⇒4sin3x=0Or (1−sin23x)=0
⇒4sin3x=0 Or cos2x= 0 …[∵cos2x+sin2x=1 ⇒1−sin2x=cos2x ]
⇒4sin3x=0 Or cosx=0
⇒3x=nπ,n∈IOr 3x=kπ+2π,k∈I
… [zero of a sine function is nπ;n∈Iand zeros of cosine function is (kπ+1)2π;k∈I ]
⇒x=3nπ,n∈IOr x=3kπ+6π,k∈I
⇒x=3nπ,n∈IOr x=62kπ+6π,k∈I
First consider x=3nπ,n∈I
For n = 0 we have
x=0
For n=1
x=3(1)π=3π
For n=2
x=3(2)π=32π
For n=3
x=3(3)π=π
For n=4
x=3(4)π=34π
For n=5
x=3(5)π=35π
For n=6
x=3(6)π=2π
Hence, we have
x = 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi $$$$ \ldots \left[ 1 \right]
Now, consider x=62kπ+6π,k∈I
For k=0
x=62(0)π+6π
⇒x=6π
For k=1
x=62(1)π+6π=63π
⇒x=2π
For k=2
x=62(2)π+6π=64π+6π
⇒x=65π
For k=3
x=62(3)π+6π=66π+6π
⇒x=67π
For k=4
x=62(4)π+6π=68π+6π
⇒x=69π
⇒x=23π
For k=5
x=62(5)π+6π=610π+6π
⇒x=611π
Hence, we have
x = \dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}$$$$ \ldots \left[ 2 \right]
From 1 and 2 we get the values of x are as follows:
\left\\{ {0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi ,\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}} \right\\}
So the total solutions are \left\\{ {0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\pi ,\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi ,\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{{5\pi }}{6},\dfrac{{7\pi }}{6},\dfrac{{3\pi }}{2},\dfrac{{11\pi }}{6}} \right\\}
Thus, the total numbers of solution are 13
Hence, option B. 13 is the correct answer.
Note: sine and cosine function are periodic with a period of 2π. The domain of each function is (−∞,∞)and range is [−1,1]. The zeros of sine function are nπ;n∈I and zeros of cosine function are (2n+1)2π;n∈I.