Solveeit Logo

Question

Question: The number of solution of \[\sec x \cdot \cos 5x + 1 = 0\] in the interval \[\left[ {0,2\pi } \right...

The number of solution of secxcos5x+1=0\sec x \cdot \cos 5x + 1 = 0 in the interval [0,2π]\left[ {0,2\pi } \right] is
A.5
B.8
C.10
D.12

Explanation

Solution

At first, we can write the given equation as cos5x+cosx=0\cos 5x + \cos x = 0
Then we have to apply the formula
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
We get 2cos3xcos2x=02 \cdot \cos 3x \cdot \cos 2x = 0
After that we solve the equation, for the given interval.

Complete step-by-step answer:
Firstly we write the given equation, which is secxcos5x+1=0\sec x \cdot \cos 5x + 1 = 0
This equation can also be written as cos5x+cosx=0\cos 5x + \cos x = 0; since cosx=1secxsecx=1cosx\cos x = \dfrac{1}{{\sec x}} \Rightarrow \sec x = \dfrac{1}{{\cos x}}.
Now, we apply the formula,
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Then we obtain from the last equation

2cos(5+12)xcos(512)x=0 cos6x2cos4x2=0[20] cos3xcos2x=0  2\cos \left( {\dfrac{{5 + 1}}{2}} \right)x \cdot \cos \left( {\dfrac{{5 - 1}}{2}} \right)x = 0 \\\ \Rightarrow \cos \dfrac{{6x}}{2} \cdot \cos \dfrac{{4x}}{2} = 0\left[ {\because 2 \ne 0} \right] \\\ \Rightarrow \cos 3x \cdot \cos 2x = 0 \\\

This implies that
cos3x=0...........(2)\cos 3x = 0...........(2)
And cos2x=0...........(3)\cos 2x = 0...........(3)
Again, we know the formula,

cosx=0 x=(2n+1)π2  \cos x = 0 \\\ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\\

Where, n is any integer.
Therefore, from the equation (2) we get

3x=(2n+1)π2 x=(2n+1)π6;where,n=0,±1,±2,.....  3x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\\ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{6};where,n = 0, \pm 1, \pm 2,..... \\\

On substituting the values of n we get,
i.e. x = \dfrac{\pi }{6}, - \dfrac{\pi }{6},\dfrac{\pi }{2}, - \dfrac{\pi }{2},\dfrac{{5\pi }}{6}, - \dfrac{{5\pi }}{6},....$$$$ = \pm \dfrac{\pi }{6}, \pm \dfrac{\pi }{2}, \pm \dfrac{{5\pi }}{6},....
Also we get from the equation (3)

2x=(2n+1)π2 x=(2n+1)π4;where,n=0,±1,±2,.....  2x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\\ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4};where,n = 0, \pm 1, \pm 2,..... \\\

On substituting the values of n we get,
i.e. x = \dfrac{\pi }{4}, - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}, - \dfrac{{3\pi }}{4},\dfrac{{5\pi }}{4}, - \dfrac{{5\pi }}{4},....$$$$ = \pm \dfrac{\pi }{4}, \pm \dfrac{\pi }{4}, \pm \dfrac{{5\pi }}{4},....
From these values of x which are in the interval [0,2π]\left[ {0,2\pi } \right] is x=π6,π4,π2,3π4,3π6,5π6,5π4,7π4,7π6,9π6x = \dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\dfrac{{3\pi }}{6},\dfrac{{5\pi }}{6},\dfrac{{5\pi }}{4},\dfrac{{7\pi }}{4},\dfrac{{7\pi }}{6},\dfrac{{9\pi }}{6}
Hence option C is the answer.

Note: One should know the basic formulas of trigonometry, and also know the general formula of all the trigonometric ratios.
They are:

sinθ=0θ=nπ cosθ=0θ=(2n+1)π2 tanθ=0θ=nπ  \sin {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\\ \cos {{\theta }} = 0 \Rightarrow {{\theta }} = (2n + 1)\dfrac{\pi }{2} \\\ \tan {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\\