Solveeit Logo

Question

Question: The number of reflexive relations of a set with four elements is equal to (a) \({{2}^{16}}\) (b)...

The number of reflexive relations of a set with four elements is equal to
(a) 216{{2}^{16}}
(b) 212{{2}^{12}}
(c) 28{{2}^{8}}
(d) 24{{2}^{4}}

Explanation

Solution

By going through the definition of reflexive relations, we will first try to find the number of reflexive relations in a set of two elements. With the help of that, we will try to get the number of reflexive relations in a four-element set.

Complete step-by-step solution:
If there are nn elements in a set XX and a relation RR is defined from the set XX to XX, then the relation RR is called a reflexive relation if every element of XX is related to itself. In other words, a relation R is reflexive if xX,(x,x)R\forall x\in X,\left( x,x \right)\in R.
For an example, let us consider a set X=\left\\{ a,b,c \right\\} and let us define two relations R1{{R}_{1}} and R2{{R}_{2}}, then the relation {{R}_{1}}=\left\\{ \left( a,a \right),\left( b,b \right),\left( c,c \right),\left( a,c \right),\left( b,c \right) \right\\} is reflexive, as xX,(x,x)R1\forall x\in X,\left( x,x \right)\in {{R}_{1}}. But the relation {{R}_{2}}=\left\\{ \left( a,a \right),\left( b,b \right),\left( a,c \right),\left( b,c \right) \right\\} is not reflexive, as (c,c)R2\left( c,c \right)\notin {{R}_{2}} which violates the condition xX,(x,x)R2\forall x\in X,\left( x,x \right)\in {{R}_{2}}.
Let us consider a set X=\left\\{ 1,2 \right\\} of two elements. Then the total number of relations on the set XX can be defined as:
\begin{aligned} & \varnothing ,\left\\{ \left( 1,1 \right) \right\\},\left\\{ \left( 2,2 \right) \right\\},\left\\{ \left( 1,2 \right) \right\\},\left\\{ \left( 2,1 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 1,2 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 2,1 \right) \right\\},\left\\{ \left( 2,2 \right),\left( 1,2 \right) \right\\}, \\\ & \left\\{ \left( 2,2 \right),\left( 2,1 \right) \right\\},\left\\{ \left( 2,1 \right),\left( 1,2 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 2,2 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 1,2 \right),\left( 2,1 \right) \right\\},\left\\{ \left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\\}, \\\ & \left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\\},\left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\\} \\\ \end{aligned}
Out of these, the reflexive relations are:
\begin{aligned} & \left\\{ \left( 1,1 \right),\left( 2,2 \right) \right\\} \\\ & \left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right) \right\\} \\\ & \left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 2,1 \right) \right\\} \\\ & \left\\{ \left( 1,1 \right),\left( 2,2 \right),\left( 1,2 \right),\left( 2,1 \right) \right\\} \\\ \end{aligned}
Thus, out of the total 16=22216={{2}^{{{2}^{2}}}} relations, only 4=2(222)4={{2}^{\left( {{2}^{2}}-2 \right)}} are reflexive.
Similarly, we can find that for a four-element set, the total number of relations is 242{{2}^{{{4}^{2}}}} and out of these 2424=212{{2}^{{{4}^{2}}-4}}={{2}^{12}} relations are reflexive.
Hence, option (b) is correct.

Note: For a set of nn elements, we can generalize the formula as
Total number of relations =2n2={{2}^{{{n}^{2}}}}
Total number of reflexive relations =2n2n=2n(n1)={{2}^{{{n}^{2}}-n}}={{2}^{n\left( n-1 \right)}}
Thus, this can be used as a short-cut trick for solving these types of questions.