Solveeit Logo

Question

Mathematics Question on complex numbers

The number of real values of xx which satisfy the equation xx1+x=xx1|\frac{x}{x-1}| + |x| = \frac{x}{|x-1|} is

A

22

B

11

C

infiniteinfinite

D

zerozero

Answer

11

Explanation

Solution

Given xx1+x=xx1\left|\frac{x}{x-1}\right| + \left|x\right| = \frac{x}{\left|x-1\right|}
(i)whenx>1\left(i\right) when x > 1,
xx1+x=xx1\frac{x}{x-1} + x = \frac{x}{x-1}
x=0\Rightarrow x= 0, does not exist
(ii)\left(ii\right) When 0x<10 \le x < 1
x1x+x=x1x\frac{x}{1- x}+x = \frac{x}{ 1-x}
x=0\Rightarrow x = 0
(iii)\left(iii\right) when <x<0-\infty < x < 0
x(x1)x=x(x1)\therefore \frac{-x}{-\left(x-1\right)} -x = \frac{x}{-\left(x-1\right)}
2x(x1)x=0\Rightarrow \frac{2x}{\left(x-1\right)} -x = 0
x[2x+1x1]=0\Rightarrow x\left[\frac{2-x+1}{x-1}\right] = 0
x=0,x=3x = 0, x = 3, does not exist
Hence, only one solution exist.