Solveeit Logo

Question

Question: The number of real solutions of the trigonometric equation \(\sin 3\theta =4\sin \theta \sin 2\theta...

The number of real solutions of the trigonometric equation sin3θ=4sinθsin2θsin4θ\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta in 0θπ0\le \theta \le \pi is.
(a) 2 real solutions
(b) 4 real solutions
(c) 6 real solutions
(d) 8 real solutions

Explanation

Solution

Hint:For solving this question we will use some trigonometric formulae like 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) , sinCsinD=2cos(C+D2)sin(CD2)\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right) and then find the value of θ\theta which will satisfy the given equation. After finding the solutions we will just count them and find the correct answer.

Complete step-by-step answer:
Given:
It is given that sin3θ=4sinθsin2θsin4θ\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta in 0θπ0\le \theta \le \pi and we have to find the number of real solutions.
Now, before we proceed we should know the following formulas:
2sinAsinB=cos(AB)cos(A+B)...................(1) 2sinAcosB=sin(A+B)+sin(AB)...................(2) sinCsinD=2cos(C+D2)sin(CD2)...............(3) cos2π3=12............................................................(4) \begin{aligned} & 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)...................\left( 1 \right) \\\ & 2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)...................\left( 2 \right) \\\ & \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 3 \right) \\\ & \cos \dfrac{2\pi }{3}=-\dfrac{1}{2}............................................................\left( 4 \right) \\\ \end{aligned}
We have,
sin3θ=4sinθsin2θsin4θ\sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta
Now, using the formula from the equation (1) to write 2sin2θsinθ=cosθcos3θ2\sin 2\theta \sin \theta =\cos \theta -\cos 3\theta . Then,
sin3θ=4sinθsin2θsin4θ sin3θ=2sin4θ(2sin2θsinθ) sin3θ=2sin4θ(cos(2θθ)cos(2θ+θ)) sin3θ=2sin4θ(cosθcos3θ) sin3θ=2sin4θcosθ2sin4θcos3θ \begin{aligned} & \sin 3\theta =4\sin \theta \sin 2\theta \sin 4\theta \\\ & \Rightarrow \sin 3\theta =2\sin 4\theta \left( 2\sin 2\theta \sin \theta \right) \\\ & \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \left( 2\theta -\theta \right)-\cos \left( 2\theta +\theta \right) \right) \\\ & \Rightarrow \sin 3\theta =2\sin 4\theta \left( \cos \theta -\cos 3\theta \right) \\\ & \Rightarrow \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\\ \end{aligned}
Now, using the formula from the equation (2) to write 2sin4θcosθ=sin5θ+sin3θ2\sin 4\theta \cos \theta =\sin 5\theta +\sin 3\theta and 2sin4θcos3θ=sin7θ+sinθ2\sin 4\theta \cos 3\theta =\sin 7\theta +\sin \theta . Then,
sin3θ=2sin4θcosθ2sin4θcos3θ sin3θ=sin(4θ+θ)+sin(4θθ)sin(4θ+3θ)sin(4θ3θ) sin3θ=sin5θ+sin3θsin7θsinθ sin7θsin5θ+sinθ=0 \begin{aligned} & \sin 3\theta =2\sin 4\theta \cos \theta -2\sin 4\theta \cos 3\theta \\\ & \Rightarrow \sin 3\theta =\sin \left( 4\theta +\theta \right)+\sin \left( 4\theta -\theta \right)-\sin \left( 4\theta +3\theta \right)-\sin \left( 4\theta -3\theta \right) \\\ & \Rightarrow \sin 3\theta =\sin 5\theta +\sin 3\theta -\sin 7\theta -\sin \theta \\\ & \Rightarrow \sin 7\theta -\sin 5\theta +\sin \theta =0 \\\ \end{aligned}
Now, using the formula from the equation (3) to write sin7θsin5θ=2cos6θsinθ\sin 7\theta -\sin 5\theta =2\cos 6\theta \sin \theta . Then,
sin7θsin5θ+sinθ=0 2cos(7θ+5θ2)sin(7θ5θ2)+sinθ=0 2cos6θsinθ+sinθ=0 2sinθ(cos6θ+12)=0 \begin{aligned} & \sin 7\theta -\sin 5\theta +\sin \theta =0 \\\ & \Rightarrow 2\cos \left( \dfrac{7\theta +5\theta }{2} \right)\sin \left( \dfrac{7\theta -5\theta }{2} \right)+\sin \theta =0 \\\ & \Rightarrow 2\cos 6\theta \sin \theta +\sin \theta =0 \\\ & \Rightarrow 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\\ \end{aligned}
Now, write 12=cos2π3\dfrac{1}{2}=-\cos \dfrac{2\pi }{3} in the above equation. Then,
2sinθ(cos6θ+12)=0 2sinθ(cos6θcos2π3)=0 sinθ=0 , cos6θ=cos2π3 \begin{aligned} & 2\sin \theta \left( \cos 6\theta +\dfrac{1}{2} \right)=0 \\\ & \Rightarrow 2\sin \theta \left( \cos 6\theta -\cos \dfrac{2\pi }{3} \right)=0 \\\ & \Rightarrow \sin \theta =0\text{ , }\cos 6\theta =\cos \dfrac{2\pi }{3} \\\ \end{aligned}
Now, from the above result we have the following two equations:
sinθ=0......................(5) cos6θ=cos2π3..........(6) \begin{aligned} & \sin \theta =0......................\left( 5 \right) \\\ & \cos 6\theta =\cos \dfrac{2\pi }{3}..........\left( 6 \right) \\\ \end{aligned}
Now, we will find suitable values of θ\theta for each of the above equation separately.
Form equation (5) we know that, sinθ=0\sin \theta =0 . And before we proceed, we should know that if sinθ=0\sin \theta =0 , then θ=nπ\theta =n\pi where nn is any integer. But before we find θ\theta , we should remember that θ\theta can take values from 00 to π\pi including 00 & π\pi . Then,
sinθ=0 θ=0,π......................(7) \begin{aligned} & \sin \theta =0 \\\ & \Rightarrow \theta =0,\pi ......................\left( 7 \right) \\\ \end{aligned}
Now, from the above result, suitable values of θ\theta will be 0,π0,\pi .
Now, before we proceed we should know one important result which we will use here.
If cosx=cosy\cos x=\cos y , then the general solution for xx in terms of y can be written as,
x=2nπ±y............(8)x=2n\pi \pm y............\left( 8 \right) , where nn is any integer.
From equation (6) we know that cos6θ=cos2π3\cos 6\theta =\cos \dfrac{2\pi }{3} . So, we can use the formula from the equation (8). Then,
cos6θ=cos2π3 6θ=2nπ±2π3 θ=nπ3±π9 \begin{aligned} & \cos 6\theta =\cos \dfrac{2\pi }{3} \\\ & \Rightarrow 6\theta =2n\pi \pm \dfrac{2\pi }{3} \\\ & \Rightarrow \theta =\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\\ \end{aligned}
First, consider, x=nπ3+π9x=\dfrac{n\pi }{3}+\dfrac{\pi }{9}
Put, n=0n=0 . Then,
x=0+π9 x=π9...........(9) \begin{aligned} & x=0+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{\pi }{9}...........\left( 9 \right) \\\ \end{aligned}
Put, n=1n=1 . Then,
x=π3+π9 x=4π9..........(10) \begin{aligned} & x=\dfrac{\pi }{3}+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{4\pi }{9}..........\left( 10 \right) \\\ \end{aligned}
Put, n=2n=2 . Then,
x=2π3+π9 x=7π9.............(11) \begin{aligned} & x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{7\pi }{9}.............\left( 11 \right) \\\ \end{aligned}
Put, n=3n=3 . Then,
x=3π3+π9 x=10π9(>π) \begin{aligned} & x=\dfrac{3\pi }{3}+\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{10\pi }{9}\left( >\pi \right) \\\ \end{aligned}
Now consider, x=nπ3π9x=\dfrac{n\pi }{3}-\dfrac{\pi }{9}
Put, n=1n=1 . Then,
x=π3π9 x=2π9.............(12) \begin{aligned} & x=\dfrac{\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{2\pi }{9}.............\left( 12 \right) \\\ \end{aligned}
Put, n=2n=2 . Then,
x=2π3π9 x=5π9............(13) \begin{aligned} & x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{5\pi }{9}............\left( 13 \right) \\\ \end{aligned}
Put, n=3n=3 . Then,
x=3π3π9 x=8π9............(14) \begin{aligned} & x=\dfrac{3\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{8\pi }{9}............\left( 14 \right) \\\ \end{aligned}
Put, n=4n=4 . Then,
x=4π3π9 x=11π9(>π) \begin{aligned} & x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\\ & \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\\ \end{aligned}
In the above calculations, we neglected the values which are greater than π\pi or lesser than 0.
From (7), (9), (10), (11), (12), (13) and (14) we have:
x=0,π ; x=π9 ; x=4π9 ; x=7π9 ; x=2π9 ; x=5π9 ; x=8π9x=0,\pi \text{ ; }x=\dfrac{\pi }{9}\text{ ; }x=\dfrac{4\pi }{9}\text{ ; }x=\dfrac{7\pi }{9}\text{ ; }x=\dfrac{2\pi }{9}\text{ ; }x=\dfrac{5\pi }{9}\text{ ; }x=\dfrac{8\pi }{9}
Now, from the above result, it is evident that there will be total 8 suitable values of θ\theta Hence, (d) will be the correct option.

Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of θ\theta and we should remember that θ\theta can take values from 00 to π\pi including 00 & π\pi while solving. Then, find the number of suitable values and match the correct option. Moreover, we should avoid calculation mistakes while solving to get the correct answer.