Question
Question: The number of real solutions of the equation \(x^{2} + 2x + 4 = 0,\)– \(\frac{1}{\alpha^{3}} + \fra...
The number of real solutions of the equation
x2+2x+4=0,– α31+β31 are.
A
1
B
2
C
3
D
4
Answer
4
Explanation
Solution
Given f(x)=f(−x)
Here we consider two cases xand a,b,c
Case I : a+b+c=0 This gives 3ax2+2bx+c=0
⇒ [−1,0]
Also ax2+bx+c=0satisfy kso α<k<β, – 2 is solution in this case.
Case II : ac>0. This gives ak2+bk+c=0
⇒ ac<0, so a2k2+abk+ac<0, 1 is solution in this case. Hence the number of solutions are four i.e. 4x2−20px+(25p2+15p−66)=0
Aliter : (54,6mu2)
⇒ (2,∞)
⇒ (−1,−54)and (−∞,−1) ⇒ x2+bx+c=0.