Solveeit Logo

Question

Question: The number of real solutions of the equation \(x^{2} + 2x + 4 = 0,\)– \(\frac{1}{\alpha^{3}} + \fra...

The number of real solutions of the equation

x2+2x+4=0,x^{2} + 2x + 4 = 0,1α3+1β3\frac{1}{\alpha^{3}} + \frac{1}{\beta^{3}} are.

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

Given f(x)=f(x)f(x) = f( - x)

Here we consider two cases xxand a,b,ca,b,c

Case I : a+b+c=0a + b + c = 0 This gives 3ax2+2bx+c=03ax^{2} + 2bx + c = 0

[1,0]\lbrack - 1,0\rbrack

Also ax2+bx+c=0ax^{2} + bx + c = 0satisfy kkso α<k<β\alpha < k < \beta, – 2 is solution in this case.

Case II : ac>0ac > 0. This gives ak2+bk+c=0ak^{2} + bk + c = 0

ac<0ac < 0, so a2k2+abk+ac<0a^{2}k^{2} + abk + ac < 0, 1 is solution in this case. Hence the number of solutions are four i.e. 4x220px+(25p2+15p66)=04x^{2} - 20px + (25p^{2} + 15p - 66) = 0

Aliter : (45,6mu2)\left( \frac{4}{5},\mspace{6mu} 2 \right)

(2,)(2,\infty)

(1,45)\left( - 1, - \frac{4}{5} \right)and (,1)( - \infty, - 1)x2+bx+c=0x^{2} + bx + c = 0.