Question
Question: The number of real solutions of the equation, \[{{\sin }^{-1}}\left( \sum\limits_{i=1}^{\infty }{{{x...
The number of real solutions of the equation, sin−1(i=1∑∞xi+1−xi=1∑∞(2x)i)=2π−cos−1(i=1∑∞(−2x)i−i=1∑∞(−x)i) lying in the interval (−21,21) is,
Solution
To solve this question first we will reduce the given equation into simplest form by using inverse trigonometric identity sin−1x=2π−cos−1x, then we will expand the expansion and using sum of infinite G.P we will obtain the algebraic expression and then we will see how many root we obtain for that algebraic equation.
Complete step-by-step answer:
Now, we have sin−1(i=1∑∞xi+1−xi=1∑∞(2x)i)=2π−cos−1(i=1∑∞(−2x)i−i=1∑∞(−x)i)
Let, f(x)=i=1∑∞xi+1−xi=1∑∞(2x)i and g(x)=i=1∑∞(−2x)i−i=1∑∞(−x)i
So, we can write sin−1(i=1∑∞xi+1−xi=1∑∞(2x)i)=2π−cos−1(i=1∑∞(−2x)i−i=1∑∞(−x)i) as,
sin−1f(x)=2π−cos−1g(x)
We know that, sin−1x=2π−cos−1x,
So, re – writing sin−1f(x)=2π−cos−1g(x) as,
sin−1f(x)=sin−1g(x)
Now, we know that sin−1x is one - one function, so it is only true for sin−1f(x)=sin−1g(x),
if f(x)=g(x) , that is
i=1∑∞xi+1−xi=1∑∞(2x)i=i=1∑∞(−2x)i−i=1∑∞(−x)i
Now, let us take f(x)=i=1∑∞xi+1−xi=1∑∞(2x)i
We can write f(x) as, f(x)=i=1∑∞xi⋅x−xi=1∑∞(2x)i
Or, f(x)=xi=1∑∞xi−xi=1∑∞(2x)i
Now, i=1∑∞xiis G.P whose first term is x and common ratio is x,
So, xi=1∑∞xi=1−xx2, as Sum of infinite G.P is 1−ra, whose first term is a and common ratio is r.
Similarly, i=1∑∞(2x)iis G.P whose first term is 2x and common ratio is 2x,
So, xi=1∑∞(2x)i=1−(2x)2x2=2−xx2.
So, f(x)=xi=1∑∞xi−xi=1∑∞(2x)i=1−xx2−2−xx2
Now, in f(x)=i=1∑∞xi+1−xi=1∑∞(2x)i and g(x)=i=1∑∞(−2x)i−i=1∑∞(−x)i, there is only difference in sign,
So, g(x)=i=1∑∞(−2x)i−i=1∑∞(−x)i=1−(−2x)−2x+1−(−x)x
Or on simplifying, we get
g(x)=i=1∑∞(−2x)i−i=1∑∞(−x)i=1+xx−2+xx
As, we have f(x)=g(x)
So, 1−xx2−2−xx2=1+xx−2+xx
Now, we have to solve this algebraic expression,
Taking all expression on left side,
1−xx2−2−xx2−1+xx+2+xx=0
Taking, x common, we get
x⋅(1−xx−2−xx−1+x1+2+x1)=0
So, x = 0 and (1−xx−2−xx−1+x1+2+x1)=0
Now, 1−xx−2−xx−1+x1+2+x1=01−xx−2−xx=1+x1−2+x1
Taking L.C.M, we get
(x−2)(x−1)2x−x2−x+x2=(x−2)(x−1)−1−x+2+x
On solving we get
(x−2)(x−1)x=(x−2)(x−1)1
On cross – multiplying, we get
x(x−2)(x−1)=(x−2)(x−1)
On opening brackets, we get
x3+2x2+5x−2=0
Let, f(x)=x3+2x2+5x−2
Now, at x=−21 , we get
f(−21)=(−21)3+2(−21)2+5(−21)−2=−81+21−25−2=−833
at x=21 , we get
f(21)=(21)3+2(21)2+5(21)−2=81+21+25−2=89
Now, f(−21)⋅f(21)<0, which means there exists one root in interval and one is x = 0.
So, we have two solutions for equation sin−1(i=1∑∞xi+1−xi=1∑∞(2x)i)=2π−cos−1(i=1∑∞(−2x)i−i=1∑∞(−x)i)
Note: To, solve such question one must know the inverse trigonometric function properties such as sin−1x=2π−cos−1x and also how to open summation and what is sum of infinite geometric expansion which is equals to 1−ra, whose first term is a and common ratio is r.