Solveeit Logo

Question

Question: The number of real solutions of \(\tan^{- 1}\sqrt{x(x + 1)} + \sin^{- 1}\sqrt{x^{2} + x + 1} = \fra...

The number of real solutions of

tan1x(x+1)+sin1x2+x+1=π2\tan^{- 1}\sqrt{x(x + 1)} + \sin^{- 1}\sqrt{x^{2} + x + 1} = \frac{\pi}{2} is

A

Zero

B

One

C

Two

D

Infinite

Answer

Two

Explanation

Solution

tan1x(x+1)+sin1x2+x+1=π2\tan ^ { - 1 } \sqrt { x ( x + 1 ) } + \sin ^ { - 1 } \sqrt { x ^ { 2 } + x + 1 } = \frac { \pi } { 2 } tan1x(x+1)\tan^{- 1}\sqrt{x(x + 1)}is defined, when x(x+1)0x(x + 1) \geq 0 ........(i)

sin1x2+x+1\sin^{- 1}\sqrt{x^{2} + x + 1} is defined, when 0x(x+1)+110 \leq x(x + 1) + 1 \leq 1 or

0x(x+1)00 \leq x(x + 1) \leq 0 ........(ii)

From (i) and (ii), x(x+1)=0x(x + 1) = 0 or x=0x = 0 and –1.

Hence, number of solutions is 2