Solveeit Logo

Question

Mathematics Question on inequalities

The number of real roots of the equation 21x=1|2-|1-|x|||=1 is

A

11

B

33

C

55

D

66

Answer

55

Explanation

Solution

21x=121x=±11x=1\left|2-\right|1-\left|x\right|\left||=1 \Rightarrow 2-\left|1-\right|x \right||=\pm1\Rightarrow \left|1-\right|x\left|\right|=1 or 33 If 1xx=11x=±1x=0|1-x|x||=1 \Rightarrow 1 - |x|=\pm 1 \Rightarrow |x|=0 or 2x=02 \Rightarrow x=0 or ±2\pm2 If 1x=31x=±3x=2|1-|x||=3 \Rightarrow 1-|x|=\pm 3 \Rightarrow |x| =-2 or 44 x=4x=±4[x2]\Rightarrow |x|=4 \Rightarrow x=\pm 4 \,\,[\because |x|\ne -2] \therefore Solution set is \left\\{-4, -2, 0, 2, 4\right\\}, hence 5 real roots in all.