Solveeit Logo

Question

Question: The number of real roots of (7 + 4\(\sqrt{3}\))<sup>\| *x* \| – 8</sup> + (7 – 4\(\sqrt{3}\))<sup>\...

The number of real roots of

(7 + 43\sqrt{3})| x | – 8 + (7 – 43\sqrt{3})| x | – 8 = 14 is -

A

0

B

2

C

4

D

None of these

Answer

4

Explanation

Solution

Note that 7 – 434\sqrt{3} = 17+43\frac{1}{7 + 4\sqrt{3}}

Putting y = (7 + 43\sqrt{3})| x | – 8 , we get from (1)

y +1y\frac{1}{y}= 14 Ž y2 – 14y + 1 = 0

Ž y = 14±19642\frac{14 \pm \sqrt{196 - 4}}{2}= 14±8132\frac{14 \pm 8\sqrt{13}}{2}

= 7 ± 43\sqrt{3}

= (7 + 43\sqrt{3})±1

Thus, (7 + 43\sqrt{3})| x | – 8 = (7 + 43\sqrt{3})±1

Ž | x | – 8 = ± 1 Ž | x | = 9, 7

Ž x = ± 9, ± 7

\ there are four values of x satisfying the given equation.