Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The number of principal solutions of tan2θ=1\tan 2 \theta = 1 is

A

One

B

Two

C

Three

D

Four

Answer

Two

Explanation

Solution

Let y=tan2θy=\tan 2 \theta
tan2θ=1\tan 2 \theta=1
2θ=tan1(1)\Longrightarrow 2 \theta=\tan ^{-1}(1)
2θ=π4+kπ\Longrightarrow 2 \theta=\frac{\pi}{4}+ k \pi, where kk is a positive integer
Now,
for k=0θ=π4k =0 \Rightarrow \theta=\frac{\pi}{4} and for k=1θ=5π4k = 1 \Rightarrow \theta =\frac{ 5 \pi}{4}
0π42π0 \leq \frac{\pi}{4} \leq 2 \pi and 05π42π0 \leq \frac{5 \pi}{4} \leq 2 \pi
2θ=π4,5π4\therefore 2 \theta=\frac{\pi}{4}, \frac{5 \pi}{4}
θ=π8,5π8\Longrightarrow \theta=\frac{\pi}{8}, \frac{5 \pi}{8}
Hence, the required principal solutions are π8\frac{\pi}{8} and 5π8\frac{5 \pi}{8}