Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The number of positive integral solutions of the equation tan1x+cot1y=tan13,\tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 , is

A

two

B

one

C

infinite

D

None of these

Answer

two

Explanation

Solution

tan1x+tan11y=tan13\tan^{-1} x + \tan^{-1} \frac{1}{y} = \tan^{-1} 3 tan1x+1y1xy=tan13xy+1yx=3 \Rightarrow \tan^{-1} \frac{x + \frac{1}{y}}{1- \frac{x}{y}} = \tan^{-1} 3 \Rightarrow \frac{xy + 1}{y-x} = 3 y=1+3x3x>0 \Rightarrow y = \frac{1+3x}{3-x} > 0 [\because x and y are positive] x3<0x<3 \Rightarrow x -3 < 0 \Rightarrow x < 3 or x=1,2 x = 1,2 y=2,7 \therefore y = 2,7 solution set is \left(x ,y\right) \in\left\\{\left(1, 2\right), \left(2,7\right)\right\\}