Solveeit Logo

Question

Question: The number of positive integral solutions of the equation \[\tan^{- 1}x + \cos^{- 1}\frac{y}{\sqrt{...

The number of positive integral solutions of the equation

tan1x+cos1y1+y2=sin1310\tan^{- 1}x + \cos^{- 1}\frac{y}{\sqrt{1 + y^{2}}} = \sin^{- 1}\frac{3}{\sqrt{10}}

ortan1x+cot1y=tan13\tan^{- 1}x + \cot^{- 1}y = \tan^{- 1}3 is

A

One

B

Two

C

Zero

D

None

Answer

Two

Explanation

Solution

tan1x+tan11y=tan13\tan^{- 1}x + \tan^{- 1}\frac{1}{y} = \tan^{- 1}3 or tan11y\tan^{- 1}\frac{1}{y}= tan13tan1x\tan^{- 1}3 - \tan^{- 1}x or

tan11y=tan13x1+3x\tan^{- 1}\frac{1}{y} = \tan^{- 1}\frac{3 - x}{1 + 3x}y=1+3x3xy = \frac{1 + 3x}{3 - x}

As x,x, y are positive integers, x=1x = 1, 2 and corresponding y=2,y = 2, 7

\therefore Solutions are (x,y)=(1,2),(2,7)(x,y) = (1,2),(2,7)