Solveeit Logo

Question

Mathematics Question on complex numbers

The number of positive integral solutions of x2(3x4)3(x2)4(x5)5(2x7)60 \frac {x^2 (3x-4)^3 (x-2)^4} {(x-5)^5 (2x-7)^6 }\leq 0 is .

A

44

B

33

C

22

D

11

Answer

33

Explanation

Solution

x2(3x4)3(x2)4(x5)5(2x7)60 \frac {x^2 (3x-4)^3 (x-2)^4} {(x-5)^5 (2x-7)^6 }\leq 0 x=0,43,2,3x4<0,x5>0\Rightarrow x = 0, \frac{4}{3},2,3x -4 < 0, x - 5 >0 or 3x4>0,x5>03x-4 > 0 , x-5 >0 [x2,(x2)4,(2x7)6>0]\left[ \because \, x^{2 }, \left(x-2\right)^{4},\left(2x -7\right)^{6 } >0\right] x=0,43,2,x<43,x>5\Rightarrow x = 0, \frac{4}{3},2 ,x < \frac{4}{3} ,x >5 or x>43,x<5x > \frac{4}{3} , x <5 x=0,2\Rightarrow x = 0,2 and integral value between 43<x<5\frac{4}{3} < x < 5\, i.e., x=2,3,4x = 2,3,4. Hence positive integral solutions are 22, 33, 44.