Solveeit Logo

Question

Question: The number of positive integral solutions of $10 \leq y_1 + y_2 + y_3 < 15$ is equal to...

The number of positive integral solutions of 10y1+y2+y3<1510 \leq y_1 + y_2 + y_3 < 15 is equal to

A

356

B

355

C

306

D

280

Answer

280

Explanation

Solution

The inequality 10y1+y2+y3<1510 \leq y_1 + y_2 + y_3 < 15 means the sum S=y1+y2+y3S = y_1 + y_2 + y_3 can take integer values 10,11,12,13,1410, 11, 12, 13, 14. The number of positive integral solutions for y1+y2+y3=ky_1 + y_2 + y_3 = k is given by the stars and bars formula: (k131)=(k12)\binom{k-1}{3-1} = \binom{k-1}{2}. We need to sum this for k=10,11,12,13,14k=10, 11, 12, 13, 14. Total solutions = k=1014(k12)=(92)+(102)+(112)+(122)+(132)\sum_{k=10}^{14} \binom{k-1}{2} = \binom{9}{2} + \binom{10}{2} + \binom{11}{2} + \binom{12}{2} + \binom{13}{2}. Using the Hockey-stick identity i=rn(ir)=(n+1r+1)\sum_{i=r}^n \binom{i}{r} = \binom{n+1}{r+1}, we can rewrite the sum as (143)(93)=36484=280\binom{14}{3} - \binom{9}{3} = 364 - 84 = 280.