Solveeit Logo

Question

Question: The number of positive integer solutions of a+b+c=60, where a is a factor of b and c, is...

The number of positive integer solutions of a+b+c=60, where a is a factor of b and c, is

Answer

145

Explanation

Solution

Solution:

We are given:

a+b+c=60,with ab and ac.a + b + c = 60,\quad \text{with } a|b \text{ and } a|c.
  1. Express bb and cc as:

    b=ak,c=am,k,mZ+b = ak,\quad c = am,\quad k, m \in \mathbb{Z}^+
  2. Substitute in the equation:

    a+ak+am=a(1+k+m)=60.a + ak + am = a(1+k+m)=60.

    Let d=1+k+md = 1+k+m. Then,

    ad=60.a\cdot d = 60.
  3. For given aa (divisor of 60), d=60ad = \frac{60}{a} must be integer. Also, k+m=d1k+m=d-1 with k,m1k, m \ge 1. Let:

    k=k1,m=m1k+m=d3.k' = k-1,\quad m' = m-1 \quad \Rightarrow \quad k'+m' = d-3.

    The number of positive solutions (k,m)(k, m) equals the number of nonnegative solutions (k,m)(k', m') which is:

    ((d3)+2121)=d2.\binom{(d-3)+2-1}{2-1} = d-2.

    This is valid for d3d\ge3.

  4. List all divisor pairs (a,d)(a, d) such that ad=60ad=60 and d3d\ge3:

    ad=60aCount (d2)160602=58230302=28320202=18415152=13512122=10610102=810662=412552=315442=220332=1\begin{array}{c|c|c} a & d=\frac{60}{a} & \text{Count }(d-2) \\\hline 1 & 60 & 60-2 = 58 \\ 2 & 30 & 30-2 = 28 \\ 3 & 20 & 20-2 = 18 \\ 4 & 15 & 15-2 = 13 \\ 5 & 12 & 12-2 = 10 \\ 6 & 10 & 10-2 = 8 \\ 10 & 6 & 6-2 = 4 \\ 12 & 5 & 5-2 = 3 \\ 15 & 4 & 4-2 = 2 \\ 20 & 3 & 3-2 = 1 \\ \end{array}
  5. Total solutions:

    58+28+18+13+10+8+4+3+2+1=145.58+28+18+13+10+8+4+3+2+1 = 145.