Solveeit Logo

Question

Question: The number of points where the function $f(x) = \begin{cases} |2x^2 - 3x - 7| & \text{if } x \leq -...

The number of points where the function

f(x)={2x23x7if x1[4x21]if 1<x<1x+1+x2if x1f(x) = \begin{cases} |2x^2 - 3x - 7| & \text{if } x \leq -1 \\ [4x^2 - 1] & \text{if } -1 < x < 1 \\ |x+1| + |x-2| & \text{if } x \geq 1 \end{cases}

[t][t] denotes the greatest integer t\leq t, is discontinuous is.

A

0

B

1

C

7

D

8

Answer

7

Explanation

Solution

The function f(x)f(x) is defined in three pieces. We analyze the continuity within each piece and at the points where the definition changes (x=1x=-1 and x=1x=1).

\textbf{1. For x1x \leq -1, f(x)=2x23x7f(x) = |2x^2 - 3x - 7|:} This is a composition of continuous functions (a polynomial and the absolute value function), so it is continuous everywhere within its domain. No discontinuities arise from this piece.

\textbf{2. For 1<x<1-1 < x < 1, f(x)=[4x21]f(x) = [4x^2 - 1]:} The greatest integer function [t][t] is discontinuous when its argument tt is an integer. Let g(x)=4x21g(x) = 4x^2 - 1. We need to find values of xx in the interval (1,1)(-1, 1) for which g(x)g(x) is an integer. Let 4x21=k4x^2 - 1 = k, where kk is an integer. 4x2=k+1    x2=k+144x^2 = k+1 \implies x^2 = \frac{k+1}{4}. For x(1,1)x \in (-1, 1), we have 0x2<10 \leq x^2 < 1. Therefore, 0k+14<10 \leq \frac{k+1}{4} < 1, which implies 0k+1<40 \leq k+1 < 4, so 1k<3-1 \leq k < 3. The possible integer values for kk are 1,0,1,2-1, 0, 1, 2.

\begin{itemize} \item If k=1k = -1: x2=0    x=0x^2 = 0 \implies x = 0. At x=0x=0, g(0)=1g(0) = -1. limx0[4x21]=[1+]=1\lim_{x \to 0^-} [4x^2 - 1] = [-1^+] = -1. limx0+[4x21]=[1+]=1\lim_{x \to 0^+} [4x^2 - 1] = [-1^+] = -1. f(0)=[1]=1f(0) = [-1] = -1. Since the left-hand limit, right-hand limit, and the function value are equal, f(x)f(x) is \textbf{continuous} at x=0x=0.

\item If $k = 0$: $x^2 = \frac{1}{4} \implies x = \pm \frac{1}{2}$.
At $x = 1/2$: $g(1/2) = 0$.
$\lim_{x \to (1/2)^-} [4x^2 - 1] = [0^-] = -1$.
$\lim_{x \to (1/2)^+} [4x^2 - 1] = [0^+] = 0$.
$f(1/2) = [0] = 0$.
Since $\lim_{x \to (1/2)^-} f(x) \neq \lim_{x \to (1/2)^+} f(x)$, $f(x)$ is \textbf{discontinuous} at $x = 1/2$.
At $x = -1/2$: $g(-1/2) = 0$.
$\lim_{x \to (-1/2)^-} [4x^2 - 1] = [0^+] = 0$.
$\lim_{x \to (-1/2)^+} [4x^2 - 1] = [0^-] = -1$.
$f(-1/2) = [0] = 0$.
Since $\lim_{x \to (-1/2)^-} f(x) \neq \lim_{x \to (-1/2)^+} f(x)$, $f(x)$ is \textbf{discontinuous} at $x = -1/2$.

\item If $k = 1$: $x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}}$.
At $x = 1/\sqrt{2}$: $g(1/\sqrt{2}) = 1$.
$\lim_{x \to (1/\sqrt{2})^-} [4x^2 - 1] = [1^-] = 0$.
$\lim_{x \to (1/\sqrt{2})^+} [4x^2 - 1] = [1^+] = 1$.
$f(1/\sqrt{2}) = [1] = 1$.
$f(x)$ is \textbf{discontinuous} at $x = 1/\sqrt{2}$.
At $x = -1/\sqrt{2}$: $g(-1/\sqrt{2}) = 1$.
$\lim_{x \to (-1/\sqrt{2})^-} [4x^2 - 1] = [1^+] = 1$.
$\lim_{x \to (-1/\sqrt{2})^+} [4x^2 - 1] = [1^-] = 0$.
$f(-1/\sqrt{2}) = [1] = 1$.
$f(x)$ is \textbf{discontinuous} at $x = -1/\sqrt{2}$.

\item If $k = 2$: $x^2 = \frac{3}{4} \implies x = \pm \frac{\sqrt{3}}{2}$.
At $x = \sqrt{3}/2$: $g(\sqrt{3}/2) = 2$.
$\lim_{x \to (\sqrt{3}/2)^-} [4x^2 - 1] = [2^-] = 1$.
$\lim_{x \to (\sqrt{3}/2)^+} [4x^2 - 1] = [2^+] = 2$.
$f(\sqrt{3}/2) = [2] = 2$.
$f(x)$ is \textbf{discontinuous} at $x = \sqrt{3}/2$.
At $x = -\sqrt{3}/2$: $g(-\sqrt{3}/2) = 2$.
$\lim_{x \to (-\sqrt{3}/2)^-} [4x^2 - 1] = [2^+] = 2$.
$\lim_{x \to (-\sqrt{3}/2)^+} [4x^2 - 1] = [2^-] = 1$.
$f(-\sqrt{3}/2) = [2] = 2$.
$f(x)$ is \textbf{discontinuous} at $x = -\sqrt{3}/2$.

\end{itemize} The points of discontinuity in the interval (1,1)(-1, 1) are x=±12,±12,±32x = \pm \frac{1}{2}, \pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}. There are \textbf{6} such points.

\textbf{3. For x1x \geq 1, f(x)=x+1+x2f(x) = |x+1| + |x-2|:} This function is a sum of absolute value functions, which is continuous for all xx. No discontinuities arise from this piece.

\textbf{4. Checking boundary points:}

\textbf{At x=1x = -1:} Left-hand limit: limx1f(x)=limx12x23x7=2(1)23(1)7=2+37=2=2\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} |2x^2 - 3x - 7| = |2(-1)^2 - 3(-1) - 7| = |2+3-7| = |-2| = 2. Right-hand limit: limx1+f(x)=limx1+[4x21]\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} [4x^2 - 1]. As x1+x \to -1^+, x21x^2 \to 1^-, so 4x2134x^2 - 1 \to 3^-. Thus, limx1+[4x21]=[3]=2\lim_{x \to -1^+} [4x^2 - 1] = [3^-] = 2. Function value: f(1)=2(1)23(1)7=2f(-1) = |2(-1)^2 - 3(-1) - 7| = 2. Since limx1f(x)=limx1+f(x)=f(1)=2\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) = f(-1) = 2, f(x)f(x) is \textbf{continuous} at x=1x = -1.

\textbf{At x=1x = 1:} Left-hand limit: limx1f(x)=limx1[4x21]\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} [4x^2 - 1]. As x1x \to 1^-, x21x^2 \to 1^-, so 4x2134x^2 - 1 \to 3^-. Thus, limx1[4x21]=[3]=2\lim_{x \to 1^-} [4x^2 - 1] = [3^-] = 2. Right-hand limit: limx1+f(x)=limx1+(x+1+x2)\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (|x+1| + |x-2|). For x>1x > 1 and close to 1, x+1=x+1|x+1| = x+1 and x2=(x2)=2x|x-2| = -(x-2) = 2-x. limx1+(x+1+2x)=limx1+3=3\lim_{x \to 1^+} (x+1 + 2-x) = \lim_{x \to 1^+} 3 = 3. Function value: f(1)=1+1+12=2+1=2+1=3f(1) = |1+1| + |1-2| = |2| + |-1| = 2 + 1 = 3. Since limx1f(x)=2\lim_{x \to 1^-} f(x) = 2 and limx1+f(x)=3\lim_{x \to 1^+} f(x) = 3, f(x)f(x) is \textbf{discontinuous} at x=1x = 1.

\textbf{Conclusion:} The points of discontinuity are the 6 points in (1,1)(-1, 1) where [4x21][4x^2 - 1] is discontinuous (±1/2,±1/2,±3/2\pm 1/2, \pm 1/\sqrt{2}, \pm \sqrt{3}/2), plus the point x=1x=1. The total number of points of discontinuity is 6+1=76 + 1 = 7.