Solveeit Logo

Question

Question: The number of points of discontinuity of the function f:(-2, 2) → R, f(x) = $[2^{-x^2}[2^x]]$ is ___...

The number of points of discontinuity of the function f:(-2, 2) → R, f(x) = [2x2[2x]][2^{-x^2}[2^x]] is _______ (where [k] represents greatest integer less than or equal to k).

Answer

2

Explanation

Solution

The function is given by f(x)=[2x2[2x]]f(x) = [2^{-x^2}[2^x]]. We need to find the number of points of discontinuity in the interval (2,2)(-2, 2).

Let's analyze the term [2x][2^x]. For x(2,2)x \in (-2, 2), we have 22<2x<222^{-2} < 2^x < 2^2, which means 1/4<2x<41/4 < 2^x < 4. The integer values that 2x2^x can take are 1,2,31, 2, 3. These values determine the points where [2x][2^x] might change its value and thus be discontinuous. The points where 2x2^x is an integer are:

  1. 2x=1    x=02^x = 1 \implies x = 0.
  2. 2x=2    x=12^x = 2 \implies x = 1.
  3. 2x=3    x=log232^x = 3 \implies x = \log_2 3. (Note that 1<log23<21 < \log_2 3 < 2 since 21=22^1=2 and 22=42^2=4).

Let's divide the interval (2,2)(-2, 2) into sub-intervals based on the value of [2x][2^x]:

Case 1: x(2,0)x \in (-2, 0)

For x(2,0)x \in (-2, 0), 1/4<2x<11/4 < 2^x < 1. So, [2x]=0[2^x] = 0. f(x)=[2x20]=[0]=0f(x) = [2^{-x^2} \cdot 0] = [0] = 0. The function is constant and continuous in this interval.

Case 2: x[0,1)x \in [0, 1)

For x[0,1)x \in [0, 1), 12x<21 \le 2^x < 2. So, [2x]=1[2^x] = 1. f(x)=[2x21]=[2x2]f(x) = [2^{-x^2} \cdot 1] = [2^{-x^2}]. For x[0,1)x \in [0, 1), x2[0,1)x^2 \in [0, 1). Therefore, x2(1,0]-x^2 \in (-1, 0]. This implies 2x2(21,20]=(1/2,1]2^{-x^2} \in (2^{-1}, 2^0] = (1/2, 1]. So, f(x)=[2x2]f(x) = [2^{-x^2}] will be 00 if 2x2(1/2,1)2^{-x^2} \in (1/2, 1) and 11 if 2x2=12^{-x^2} = 1. 2x2=1    x2=0    x=02^{-x^2} = 1 \implies -x^2 = 0 \implies x = 0. So, for x=0x=0, f(0)=[202[20]]=[11]=1f(0) = [2^{-0^2} \cdot [2^0]] = [1 \cdot 1] = 1. For x(0,1)x \in (0, 1), 2x2(1/2,1)2^{-x^2} \in (1/2, 1), so f(x)=[2x2]=0f(x) = [2^{-x^2}] = 0. At x=0x=0: f(0)=1f(0)=1. limx0f(x)=0\lim_{x \to 0^-} f(x) = 0 (from Case 1). limx0+f(x)=0\lim_{x \to 0^+} f(x) = 0. Since f(0)limx0+f(x)f(0) \ne \lim_{x \to 0^+} f(x), f(x)f(x) is discontinuous at x=0x=0.

Case 3: x[1,log23)x \in [1, \log_2 3)

For x[1,log23)x \in [1, \log_2 3), 22x<32 \le 2^x < 3. So, [2x]=2[2^x] = 2. f(x)=[2x22]=[21x2]f(x) = [2^{-x^2} \cdot 2] = [2^{1-x^2}]. For x[1,log23)x \in [1, \log_2 3), x2[1,(log23)2)x^2 \in [1, (\log_2 3)^2). (Note: log231.58\log_2 3 \approx 1.58, so (log23)22.496(\log_2 3)^2 \approx 2.496). Therefore, 1x2(1(log23)2,11]=(12.496,0]=(1.496,0]1-x^2 \in (1-(\log_2 3)^2, 1-1] = (1-2.496, 0] = (-1.496, 0]. This implies 21x2(21.496,20]=(21.496,1]2^{1-x^2} \in (2^{-1.496}, 2^0] = (2^{-1.496}, 1]. 21.496=1/21.4962^{-1.496} = 1/2^{1.496}. Since 21=2,22=42^1=2, 2^2=4, 21.4962^{1.496} is between 2 and 4 (approx 2.822.82). So 21x2(1/2.82,1](0.354,1]2^{1-x^2} \in (1/2.82, 1] \approx (0.354, 1]. So, f(x)=[21x2]f(x) = [2^{1-x^2}] will be 00 if 21x2(0.354,1)2^{1-x^2} \in (0.354, 1) and 11 if 21x2=12^{1-x^2} = 1. 21x2=1    1x2=0    x2=1    x=12^{1-x^2} = 1 \implies 1-x^2 = 0 \implies x^2 = 1 \implies x = 1 (since x[1,log23)x \in [1, \log_2 3)). So, for x=1x=1, f(1)=[212[21]]=[212]=[1/22]=[1]=1f(1) = [2^{-1^2} \cdot [2^1]] = [2^{-1} \cdot 2] = [1/2 \cdot 2] = [1] = 1. For x(1,log23)x \in (1, \log_2 3), 21x2(0.354,1)2^{1-x^2} \in (0.354, 1), so f(x)=[21x2]=0f(x) = [2^{1-x^2}] = 0. At x=1x=1: f(1)=1f(1)=1. limx1f(x)=0\lim_{x \to 1^-} f(x) = 0 (from Case 2). limx1+f(x)=0\lim_{x \to 1^+} f(x) = 0. Since f(1)limx1+f(x)f(1) \ne \lim_{x \to 1^+} f(x), f(x)f(x) is discontinuous at x=1x=1.

Case 4: x[log23,2)x \in [\log_2 3, 2)

For x[log23,2)x \in [\log_2 3, 2), 32x<43 \le 2^x < 4. So, [2x]=3[2^x] = 3. f(x)=[2x23]f(x) = [2^{-x^2} \cdot 3]. For x[log23,2)x \in [\log_2 3, 2), x2[(log23)2,4)x^2 \in [(\log_2 3)^2, 4). Therefore, x2(4,(log23)2]-x^2 \in (-4, -(\log_2 3)^2]. This implies 2x2(24,2(log23)2]=(1/16,1/2(log23)2]2^{-x^2} \in (2^{-4}, 2^{-(\log_2 3)^2}] = (1/16, 1/2^{(\log_2 3)^2}]. 1/16=0.06251/16 = 0.0625. 2(log23)222.4960.1782^{-(\log_2 3)^2} \approx 2^{-2.496} \approx 0.178. So, 2x2(0.0625,0.178]2^{-x^2} \in (0.0625, 0.178]. Then f(x)=[32x2]f(x) = [3 \cdot 2^{-x^2}]. The values of 32x23 \cdot 2^{-x^2} are in (30.0625,30.178]=(0.1875,0.534](3 \cdot 0.0625, 3 \cdot 0.178] = (0.1875, 0.534]. For all xx in this interval, 32x23 \cdot 2^{-x^2} is between 0.18750.1875 and 0.5340.534. So, f(x)=[32x2]=0f(x) = [3 \cdot 2^{-x^2}] = 0 for all x[log23,2)x \in [\log_2 3, 2). At x=log23x=\log_2 3: f(log23)=[2(log23)2[2log23]]=[2(log23)23]f(\log_2 3) = [2^{-(\log_2 3)^2} \cdot [2^{\log_2 3}]] = [2^{-(\log_2 3)^2} \cdot 3]. As calculated above, this value is 00. limx(log23)f(x)=0\lim_{x \to (\log_2 3)^-} f(x) = 0 (from Case 3). limx(log23)+f(x)=0\lim_{x \to (\log_2 3)^+} f(x) = 0. Since f(log23)=limx(log23)f(x)=limx(log23)+f(x)=0f(\log_2 3) = \lim_{x \to (\log_2 3)^-} f(x) = \lim_{x \to (\log_2 3)^+} f(x) = 0, f(x)f(x) is continuous at x=log23x=\log_2 3.

Summary of f(x)f(x):

  • For x(2,0)x \in (-2, 0), f(x)=0f(x) = 0.
  • For x=0x=0, f(0)=1f(0) = 1.
  • For x(0,1)x \in (0, 1), f(x)=0f(x) = 0.
  • For x=1x=1, f(1)=1f(1) = 1.
  • For x(1,2)x \in (1, 2), f(x)=0f(x) = 0. (This covers (1,log23)(1, \log_2 3) and [log23,2)[\log_2 3, 2)).

We found discontinuities at x=0x=0 and x=1x=1. Let's check for any other discontinuities. The function 2x22^{-x^2} is continuous everywhere. The function [2x][2^x] is discontinuous at x=0,1,log23x=0, 1, \log_2 3. We have already analyzed these points. The function [g(x)][g(x)] can also be discontinuous if g(x)g(x) (which is 2x2[2x]2^{-x^2}[2^x]) takes an integer value and its graph "jumps" over it. However, in all the intervals where [2x][2^x] is constant, f(x)f(x) either remains constant at 0 or is [2x2][2^{-x^2}] or [22x2][2 \cdot 2^{-x^2}] or [32x2][3 \cdot 2^{-x^2}].

  • For x(0,1)x \in (0, 1), f(x)=[2x2]f(x) = [2^{-x^2}]. 2x2(1/2,1)2^{-x^2} \in (1/2, 1). So f(x)=0f(x)=0. Continuous.
  • For x(1,log23)x \in (1, \log_2 3), f(x)=[21x2]f(x) = [2^{1-x^2}]. 21x2(0.354,1)2^{1-x^2} \in (0.354, 1). So f(x)=0f(x)=0. Continuous.
  • For x(log23,2)x \in (\log_2 3, 2), f(x)=[32x2]f(x) = [3 \cdot 2^{-x^2}]. 32x2(0.1875,0.534)3 \cdot 2^{-x^2} \in (0.1875, 0.534). So f(x)=0f(x)=0. Continuous.

Thus, the only points of discontinuity are x=0x=0 and x=1x=1. There are 2 points of discontinuity.

The final answer is 2\boxed{2}.