Solveeit Logo

Question

Question: The number of points at which the function \(f\left( x \right)=\left| x-0.5 \right|+\left| x-1 \righ...

The number of points at which the function f(x)=x0.5+x1+tanxf\left( x \right)=\left| x-0.5 \right|+\left| x-1 \right|+\tan x does not have a derivative in the interval (0,2) is/are?
a. 1
b. 2
c. 3
d. 4

Explanation

Solution

We will split the function f(x) in four integrals as, f\left( x \right)=\left\\{ \begin{aligned} & -x+\dfrac{1}{2}-x+1+\tan x;0\le x\le \dfrac{1}{2} \\\ & x-\dfrac{1}{2}-x+1+\tan x;\dfrac{1}{2}\le x\le 1 \\\ & x-\dfrac{1}{2}+x-1+\tan x;1\le x\le \dfrac{\pi }{2} \\\ & x-\dfrac{1}{2}+x-1+\tan x;\dfrac{\pi }{2}\le x\le 2 \\\ \end{aligned} \right.
We will then check the value of f(x) in different intervals by differentiating f(x) with respect to x and then finally compare both the sides. If both the sides are equal, then the function is differentiable in (0,2) at that point and if not then the function is not differentiable at that point.

Complete step-by-step answer :
It is given in the question that we have to find the number of points at which the function f(x)=x0.5+x1+tanxf\left( x \right)=\left| x-0.5 \right|+\left| x-1 \right|+\tan x does not have a derivative in the interval (0,2).
We have f(x)=x0.5+x1+tanxf\left( x \right)=\left| x-0.5 \right|+\left| x-1 \right|+\tan x. We can break the interval of (0,2) into four parts as, 0x12,12x1,1xπ2,π2x20\le x\le \dfrac{1}{2},\dfrac{1}{2}\le x\le 1,1\le x\le \dfrac{\pi }{2},\dfrac{\pi }{2}\le x\le 2. This is because, we have f(x)=x0.5+x1+tanxf\left( x \right)=\left| x-0.5 \right|+\left| x-1 \right|+\tan x, where, in x0.5\left| x-0.5 \right|, x cannot be 12\dfrac{1}{2}, then in x1\left| x-1 \right|, x cannot be 1 and in tan x, x cannot be π2\dfrac{\pi }{2}.
Now, if we put any value of x from (0to12)\left( 0to\dfrac{1}{2} \right) in function, we get,
f\left( x \right)=\left\\{ -x+\dfrac{1}{2}-x+1+\tan x \right\\}
Now, if we put any value of x from (12to1)\left( \dfrac{1}{2}to1 \right), we get,
f\left( x \right)=\left\\{ x-\dfrac{1}{2}-x-1+\tan x \right\\}
Now, if we put any value of x from (1toπ2)\left( 1to\dfrac{\pi }{2} \right), we get,
f\left( x \right)=\left\\{ x-\dfrac{1}{2}+x-1+\tan x \right\\}
Similarly if we put any value of x from (π2to2)\left( \dfrac{\pi }{2}to2 \right), we get,
f\left( x \right)=\left\\{ x-\dfrac{1}{2}+x-1+\tan x \right\\}
So, we can from the above observations, we can write,
f\left( x \right)=\left\\{ \begin{aligned} & -x+\dfrac{1}{2}-x+1+\tan x;0\le x\le \dfrac{1}{2} \\\ & x-\dfrac{1}{2}-x+1+\tan x;\dfrac{1}{2}\le x\le 1 \\\ & x-\dfrac{1}{2}+x-1+\tan x;1\le x\le \dfrac{\pi }{2} \\\ & x-\dfrac{1}{2}+x-1+\tan x;\dfrac{\pi }{2}\le x\le 2 \\\ \end{aligned} \right.
On further solving f(x) in different intervals, we get,
f\left( x \right)=\left\\{ \begin{aligned} & \dfrac{3}{2}-2x+\tan x;0\le x\le \dfrac{1}{2} \\\ & \dfrac{1}{2}+\tan x;\dfrac{1}{2}\le x\le 1 \\\ & 2x-\dfrac{3}{2}+\tan x;1\le x\le \dfrac{\pi }{2} \\\ & 2x-\dfrac{3}{2}+\tan x;\dfrac{\pi }{2}\le x\le 2 \\\ \end{aligned} \right.
Now, we will check the differentiability of f(x) for different values of x.
We have,
LHD=f(x)x12=322x+tanx f(x)x12=2+sec2x f(x)x12=2+sec2(12) \begin{aligned} & LHD=\underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,=\dfrac{3}{2}-2x+\tan x \\\ & \underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,=-2+{{\sec }^{2}}x \\\ & \underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,=-2+{{\sec }^{2}}\left( \dfrac{1}{2} \right) \\\ \end{aligned}
And we have,
RHD=f(x)x12=12+tanx f(x)x12=0+sec2x f(x)x12=sec2(12) \begin{aligned} & RHD=\underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,=\dfrac{1}{2}+\tan x \\\ & \underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,=0+{{\sec }^{2}}x \\\ & \underset{x\to \dfrac{1}{2}}{\mathop{f\left( x \right)}}\,={{\sec }^{2}}\left( \dfrac{1}{2} \right) \\\ \end{aligned}
Thus, we get,
LHDRHDLHD\ne RHD
Thus, the function f(x) is not differentiable at x=12x=\dfrac{1}{2}.
Now, we will consider,

& LHD=f\left( {{1}^{-}} \right)=\dfrac{1}{2}+\tan x \\\ & f’\left( {{1}^{-}} \right)={{\sec }^{2}}x \\\ & f’\left( {{1}^{-}} \right)={{\sec }^{2}}\left( 1 \right) \\\ & RHD=f\left( {{1}^{+}} \right)=2x-\dfrac{3}{2}+\tan x \\\ & f'\left( {{1}^{+}} \right)=2+{{\sec }^{2}}x \\\ & f'\left( {{1}^{+}} \right)=2+{{\sec }^{2}}\left( 1 \right) \\\ & So,LHD\ne RHD \\\ \end{aligned}$$ Thus, f(x) is not differentiable at x = 1. As $\tan \dfrac{\pi }{2}$ is not defined so, we will not check the function differentiability at $\dfrac{\pi }{2}$ because the function is not defined at $x=\dfrac{\pi }{2}$. Thus, f(x) is discontinuous at $\dfrac{\pi }{2}$. So, f(x) is not differentiable at $x=\dfrac{\pi }{2}$. Therefore, there are 3 points at which f(x) do not have derivative in interval (0,2). So, option (c) is the correct answer. **Note** :Most of the students make mistakes in opening the modulus. They may directly open the modulus assuming that all values will be positive and exactly same, as a result they may get $f\left( x \right)=\left\\{ x+\dfrac{1}{2}+x+1+\tan x \right\\}$ in all the four cases, which is not correct at all. We have to take care of signs while opening the modulus.