Solveeit Logo

Question

Question: The number of pairs (x, y) satisfying the equations \(\sin x + \sin y = \sin ( x + y )\) and \(| x...

The number of pairs (x, y) satisfying the equations

sinx+siny=sin(x+y)\sin x + \sin y = \sin ( x + y ) and x+y=1| x | + | y | = 1 is

A

2

B

4

C

6

D

\infty

Answer

6

Explanation

Solution

The first equation can be written as,

2sin12(x+y)cos12(xy)=2sin12(x+y)cos12(x+y)2 \sin \frac { 1 } { 2 } ( x + y ) \cos \frac { 1 } { 2 } ( x - y ) = 2 \sin \frac { 1 } { 2 } ( x + y ) \cos \frac { 1 } { 2 } ( x + y )

\therefore Either sin12(x+y)=0\sin \frac { 1 } { 2 } ( x + y ) = 0 or sin12x=0\sin \frac { 1 } { 2 } x = 0 or sin12y=0\sin \frac { 1 } { 2 } y = 0

. As |x| + |y| =1, therefore when x+y=0x + y = 0we have to reject x+y=1x + y = 1 or x+y=1x + y = - 1 and solve it with xy=1x - y = 1or xy=1x - y = - 1 which gives (12,12)\left( \frac { 1 } { 2 } , \frac { - 1 } { 2 } \right) or

(12,12)\left( \frac { - 1 } { 2 } , \frac { 1 } { 2 } \right) as the possible solution. Again solving with we get (0,±1)( 0 , \pm 1 ) and solving with y=0y = 0 we get (±1,0)( \pm 1,0 ) as the other solution. Thus we have six pairs of solution for x and y.