Solveeit Logo

Question

Question: The number of ordered pairs (r , k) for which \[6{}^{35}{C_r} = \left( {{k^2} - 3} \right){}^{36}{C_...

The number of ordered pairs (r , k) for which 635Cr=(k23)36Cr+16{}^{35}{C_r} = \left( {{k^2} - 3} \right){}^{36}{C_{r + 1}}, where k is an integer is,
A.6
B.2
C.4
D.3

Explanation

Solution

Use the expansion of nCr=nPr(nr)!{}^n{C_r} = \dfrac{{{}^n{P_r}}}{{\left( {n - r} \right)!}} . and on expanding on both the sides , cancel out the common terms from both the sides and calculate up to the final relation between r and k . And thus from all the available values of r and k we can form all the possible ordered pairs of r and k .

Complete step-by-step answer:
Now, expand both side of 635Cr=(k23)36Cr+16{}^{35}{C_r} = \left( {{k^2} - 3} \right){}^{36}{C_{r + 1}} by the formula stated in the hint.
635!r!(35r!)=(k23)36!(r+1)!(36(r+1))!6\dfrac{{35!}}{{r!\left( {35 - r!} \right)}} = \left( {{k^2} - 3} \right)\dfrac{{36!}}{{\left( {r + 1} \right)!\left( {36 - \left( {r + 1} \right)} \right)!}}
Also use the property that, r!=r.(r1)! r!=r.(r1).(r2)........3.2.1 \begin{gathered} r! = r.(r - 1)! \\\ r! = r.(r - 1).(r - 2)........3.2.1 \\\ \end{gathered}
635!r!(35r!)=(k23)36!(r+1)!(35r)!6\dfrac{{35!}}{{r!\left( {35 - r!} \right)}} = \left( {{k^2} - 3} \right)\dfrac{{36!}}{{\left( {r + 1} \right)!\left( {35 - r} \right)!}}
Further simplifying the above equation,
61r!=(k23)36(r+1)r!6\dfrac{1}{{r!}} = \left( {{k^2} - 3} \right)\dfrac{{36}}{{\left( {r + 1} \right)r!}}
6=36(k23)(r+1)6 = \dfrac{{36\left( {{k^2} - 3} \right)}}{{\left( {r + 1} \right)}}
16=(k23)(r+1)\dfrac{1}{6} = \dfrac{{\left( {{k^2} - 3} \right)}}{{\left( {r + 1} \right)}}
r+16=k23\dfrac{{r + 1}}{6} = {k^2} - 3
k2=3+r+16=r+196{k^2} = 3 + \dfrac{{r + 1}}{6} = \dfrac{{r + 19}}{6} …(1)
Now, as k is an integer stated in the question,
Thus, r+196\dfrac{{r + 19}}{6}is a perfect square
Now, 635Cr=(k23)36Cr+16{}^{35}{C_r} = \left( {{k^2} - 3} \right){}^{36}{C_{r + 1}} will exist only if
As we know from the above given equation in the question and in general the value of r can be less than or equal to n and so r varies as stated below.
0r350 \leqslant r \leqslant 35
19r+195419 \leqslant r + 19 \leqslant 54
196r+1966\dfrac{{19}}{6} \leqslant \dfrac{{r + 19}}{6} \leqslant 6
196k26\dfrac{{19}}{6} \leqslant {k^2} \leqslant 6
4k264 \leqslant {k^2} \leqslant 6
Thus, for, 4k264 \leqslant {k^2} \leqslant 6
For k to be an integer,
k2=4{k^2} = 4
k=±2k = \pm 2 …(2)
r+1=6r + 1 = 6
r=5r = 5 … (3)
Hence the ordered pair (r , k) is (5,2) and (5,-2)
Two ordered pairs are possible and option (b) is the correct answer.

Note: Combination is selection of all or part of sets of objects, regardless of the order in which objects are selected, whereas in permutation the order of selection matters.
Also, nCr=nPr(nr)!{}^n{C_r} = \dfrac{{{}^n{P_r}}}{{\left( {n - r} \right)!}}