Solveeit Logo

Question

Question: The number of ordered 4-tuple (*x*, y, z, w) (*x*, y, z, w Ī [0,10]) which satisfies the inequality...

The number of ordered 4-tuple (x, y, z, w) (x, y, z, w Ī

[0,10]) which satisfies the inequality

2sin2x3cos2y4sin2z5cos2w1202^{\sin^{2}x}3^{\cos^{2}y}4^{\sin^{2}z}5^{\cos^{2}w} \geq 120 is –

A

0

B

144

C

81

D

Infinite

Answer

144

Explanation

Solution

Q x, y, z, w Ī [0, 10]

Q 2sin2x3cos2y4sin2z5cos2w1202^{\sin^{2}x}3^{\cos^{2}y}4^{\sin^{2}z}5^{\cos^{2}w} \geq 120

Ž 2sin2x3cos2y4sin2z5cos2w2.3.4.52^{\sin^{2}x}3^{\cos^{2}y}4^{\sin^{2}z}5^{\cos^{2}w} \geq 2.3.4.5

Taking logarithm both sides we have

Ž sin2x log 2 + cos2y log3 + sin2z log 4 + cos2 w log 5 ³ log 2 + log 3 + log 4 + log 5

Ž cos2x log 2 + sin2y log 3 + cos2 z log 4 + sin2w log 5 £ 0

which is possible only when

cos2 x = 0 Ž x = mp + p/2, m Ī I

sin2 y = 0 Ž y = np, n Ī I

cos2 z = 0 Ž z = rp + p/2, r Ī I

sin2 w = 0 Ž w = pp, p Ī I

Q x, y, z, w Ī [0, 10]

Ž x = p/2, 3p/2, 5p/2 (three solutions)

Ž y = 0, p, 2p, 3p (four solutions)

Ž z = p/2, 3p/2, 5p/2 (three solutions)

Ž w = 0, p, 2p, 3p (four solutions)

Hence the number of ordered 4-tuple (x, y, z, w) is 3. 4. 3. 4. = 144.