Question
Question: The number of ordered 4-tuple (*x*, y, z, w) (*x*, y, z, w Ī [0,10]) which satisfies the inequality...
The number of ordered 4-tuple (x, y, z, w) (x, y, z, w Ī
[0,10]) which satisfies the inequality
2sin2x3cos2y4sin2z5cos2w≥120 is –
0
144
81
Infinite
144
Solution
Q x, y, z, w Ī [0, 10]
Q 2sin2x3cos2y4sin2z5cos2w≥120
Ž 2sin2x3cos2y4sin2z5cos2w≥2.3.4.5
Taking logarithm both sides we have
Ž sin2x log 2 + cos2y log3 + sin2z log 4 + cos2 w log 5 ³ log 2 + log 3 + log 4 + log 5
Ž cos2x log 2 + sin2y log 3 + cos2 z log 4 + sin2w log 5 £ 0
which is possible only when
cos2 x = 0 Ž x = mp + p/2, m Ī I
sin2 y = 0 Ž y = np, n Ī I
cos2 z = 0 Ž z = rp + p/2, r Ī I
sin2 w = 0 Ž w = pp, p Ī I
Q x, y, z, w Ī [0, 10]
Ž x = p/2, 3p/2, 5p/2 (three solutions)
Ž y = 0, p, 2p, 3p (four solutions)
Ž z = p/2, 3p/2, 5p/2 (three solutions)
Ž w = 0, p, 2p, 3p (four solutions)
Hence the number of ordered 4-tuple (x, y, z, w) is 3. 4. 3. 4. = 144.