Solveeit Logo

Question

Question: The number of non-zero terms in the expansion of \((1 + x - 2x^{2})^{6} = 1 + a_{1}x + a_{2}x^{2} + ...

The number of non-zero terms in the expansion of (1+x2x2)6=1+a1x+a2x2+....+a12x12(1 + x - 2x^{2})^{6} = 1 + a_{1}x + a_{2}x^{2} + .... + a_{12}x^{12} is.

A

9

B

0

C

5

D

10

Answer

5

Explanation

Solution

Given expression

=1+2(1+1n)1+3(1+1n)2+....1+2t+3t2+...= 1 + 2\left( 1 + \frac{1}{n} \right)^{1} + 3\left( 1 + \frac{1}{n} \right)^{2} + ....1 + 2t + 3t^{2} + ...

∴ The number of non-zero terms is 5.