Solveeit Logo

Question

Question: The number of integral values of x satisfying the equation $sgn \left( \left[ \frac{15}{1 + x^2} \ri...

The number of integral values of x satisfying the equation sgn([151+x2])=[1+{2x}]sgn \left( \left[ \frac{15}{1 + x^2} \right] \right) = [1 + \{2x\}] is:

[Note: sgn(y), [y] and {y} denote signum function, greatest integer function and fractional part function respectively]

A

5

B

7

C

15

D

16

Answer

7

Explanation

Solution

The given equation is sgn([151+x2])=[1+{2x}]sgn \left( \left[ \frac{15}{1 + x^2} \right] \right) = [1 + \{2x\}].

Analysis of the Right Hand Side (RHS):

The term {2x}\{2x\} represents the fractional part of 2x2x. By definition, 0{2x}<10 \le \{2x\} < 1 for any real number xx. Adding 1 to this inequality, we get 11+{2x}<1+11 \le 1 + \{2x\} < 1 + 1, which simplifies to 11+{2x}<21 \le 1 + \{2x\} < 2. The term [1+{2x}][1 + \{2x\}] represents the greatest integer less than or equal to 1+{2x}1 + \{2x\}. Since 11+{2x}<21 \le 1 + \{2x\} < 2, the greatest integer less than or equal to 1+{2x}1 + \{2x\} is 1. So, [1+{2x}]=1[1 + \{2x\}] = 1 for all real values of xx.

Analysis of the Left Hand Side (LHS):

Now, the given equation becomes sgn([151+x2])=1sgn \left( \left[ \frac{15}{1 + x^2} \right] \right) = 1.

The term sgn(y)sgn(y) is the signum function, defined as:

sgn(y)={1if y>00if y=01if y<0sgn(y) = \begin{cases} 1 & \text{if } y > 0 \\ 0 & \text{if } y = 0 \\ -1 & \text{if } y < 0 \end{cases}

For the equation sgn([151+x2])=1sgn \left( \left[ \frac{15}{1 + x^2} \right] \right) = 1 to hold, the argument of the signum function must be positive. The argument is [151+x2]\left[ \frac{15}{1 + x^2} \right]. So, we must have [151+x2]>0\left[ \frac{15}{1 + x^2} \right] > 0.

The term [151+x2]\left[ \frac{15}{1 + x^2} \right] represents the greatest integer less than or equal to 151+x2\frac{15}{1 + x^2}. For the greatest integer of a number to be positive, the number itself must be greater than or equal to 1. So, we must have 151+x21\frac{15}{1 + x^2} \ge 1.

Solving the Inequality:

We need to solve the inequality 151+x21\frac{15}{1 + x^2} \ge 1 for integral values of xx. Since xx is a real number, x20x^2 \ge 0. Therefore, 1+x211 + x^2 \ge 1. This means 1+x21 + x^2 is always positive. We can multiply both sides of the inequality by 1+x21 + x^2 without changing the direction of the inequality: 151(1+x2)15 \ge 1 \cdot (1 + x^2) 151+x215 \ge 1 + x^2 Subtracting 1 from both sides, we get: 151x215 - 1 \ge x^2 14x214 \ge x^2 x214x^2 \le 14.

We are looking for integral values of xx that satisfy x214x^2 \le 14. This inequality is equivalent to 14x14-\sqrt{14} \le x \le \sqrt{14}. We need to find the integers in the interval [14,14][-\sqrt{14}, \sqrt{14}]. We know that 32=93^2 = 9 and 42=164^2 = 16. So, 3<14<43 < \sqrt{14} < 4. Approximating 14\sqrt{14}, we have 143.74\sqrt{14} \approx 3.74. So the inequality is approximately 3.74x3.74-3.74 \le x \le 3.74.

The integral values of xx that lie in the interval [3.74,3.74][-3.74, 3.74] are 3,2,1,0,1,2,3-3, -2, -1, 0, 1, 2, 3. Let's check these values: If x=3x = -3, x2=914x^2 = 9 \le 14. If x=2x = -2, x2=414x^2 = 4 \le 14. If x=1x = -1, x2=114x^2 = 1 \le 14. If x=0x = 0, x2=014x^2 = 0 \le 14. If x=1x = 1, x2=114x^2 = 1 \le 14. If x=2x = 2, x2=414x^2 = 4 \le 14. If x=3x = 3, x2=914x^2 = 9 \le 14. If x=4x = -4, x2=16≰14x^2 = 16 \not\le 14. If x=4x = 4, x2=16≰14x^2 = 16 \not\le 14.

The integral values of xx satisfying x214x^2 \le 14 are 3,2,1,0,1,2,3-3, -2, -1, 0, 1, 2, 3. The number of these integral values is 7.

Therefore, the number of integral values of xx satisfying the equation is 7.