Solveeit Logo

Question

Question: The number of integral values of \(\lambda\) for which \(x^{2} + y^{2} + \lambda x + (1 - \lambda)y ...

The number of integral values of λ\lambda for which x2+y2+λx+(1λ)y+5=0x^{2} + y^{2} + \lambda x + (1 - \lambda)y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is

A

14

B

18

C

16

D

None of these

Answer

16

Explanation

Solution

Centre of circle =(λ2,(1λ)2)= \left( - \frac{\lambda}{2}, - \frac{(1 - \lambda)}{2} \right) ;

Radius of circle =(λ2)2+(1λ2)255= \sqrt{\left( \frac{\lambda}{2} \right)^{2} + \left( \frac{1 - \lambda}{2} \right)^{2} - 5} \leq 5

2λ22λ1190\Rightarrow 2\lambda^{2} - 2\lambda - 119 \leq 0 ,

\therefore 12392λ1+23927.2λ8.2\frac{1 - \sqrt{239}}{2} \leq \lambda \leq \frac{1 + \sqrt{239}}{2} \Rightarrow - 7.2 \leq \lambda \leq 8.2 (Nearly). λ=7,6,\therefore\lambda = - 7, - 6, ................,7, 8.

Hence number of integral values of λ\lambda is 16.