Solveeit Logo

Question

Mathematics Question on general and middle terms

The number of integral values of k for which the equation 7cosx+5sinx=2k+17 \cos x + 5 \sin x = 2k + 1 has solution is

A

4

B

8

C

10

D

12

Answer

8

Explanation

Solution

Given 7cosx+5sinx=2k+17 \cos x + 5 \sin x = 2k + 1
We know that racosθ+bsinθr-r \le a \cos\theta +b \sin\theta \le r where r=a2+b2r=\sqrt{a^{2} +b^{2}}
49+257cosx+5sinx49+25\therefore \, \, - \sqrt{49 +25} \le 7\cos x +5 \sin x \le\sqrt{49+25}
742k+1748.62k+18.6\Rightarrow - \sqrt{74} \le 2k +1 \le \sqrt{74}\Rightarrow -8.6 \le2k + 1 \le 8.6
9.62k7.64.8k3.8\Rightarrow -9.6 \le2k \le 7.6 \Rightarrow -4.8 \le k \le 3.8
k\Rightarrow \, \, k can take only 8 integral values.