Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The number of integral values of KK, for which the equation 7cosx+5sinx=2K+17\, \cos \,x + 5\, \sin\, x = 2K + 1 has a solution, is

A

4

B

8

C

10

D

12

Answer

8

Explanation

Solution

72+52(7cosx+5sinx)72+52-\sqrt{7^{2}+5^{2}} \leq(7 \cos x+5 \sin x) \leq \sqrt{7^{2}+5^{2}}
So, for solution, 74(2K+1)74-\sqrt{74} \leq(2 K+1) \leq \sqrt{74}
8.6(2K+1)8.6\Rightarrow -8.6 \leq(2 K+1) \leq 8.6
9.62K7.6\Rightarrow -9.6 \leq 2 K \leq 7.6
4.8K3.8\Rightarrow -4.8 \leq K \leq 3.8
So, integral values of KK are
4,3,2,1,0,1,2,3-4,-3,-2,-1,0,1,2,3 (eight values)