Solveeit Logo

Question

Question: The number of integral terms in the expansion of \((\sqrt{3} + \sqrt[8]{5})^{256}\) is...

The number of integral terms in the expansion of (3+58)256(\sqrt{3} + \sqrt[8]{5})^{256} is

A

32

B

33

C

34

D

35

Answer

33

Explanation

Solution

Tr+1=256Cr.3256r2.5r8T_{r + 1} =^{256} ⥂ C_{r}. ⥂ 3^{\frac{256 - r}{2}}.5^{\frac{r}{8}}

First term = 256C0312850=integer256 ⥂ C_{0}3^{128}5^{0} = \text{integer} and after eight terms, i.e., 9th term = 256⥂⥂C83124.51=integer256 ⥂ ⥂ C_{8}3^{124}.5^{1} = \text{integer}

Continuing like this, we get an A.P., 1st,9th.......257th1^{\text{st}},9^{th}.......257^{th}; Tn=a+(n1)d257=1+(n1)8n=33T_{n} = a + (n - 1)d \Rightarrow 257 = 1 + (n - 1)8 \Rightarrow n = 33