Solveeit Logo

Question

Question: The number of integral terms in the expansion of \({{\left( 2\sqrt{5}+\sqrt[6]{7} \right)}^{642}}\) ...

The number of integral terms in the expansion of (25+76)642{{\left( 2\sqrt{5}+\sqrt[6]{7} \right)}^{642}} are:
A. 105
B. 107
C. 321
D. 108

Explanation

Solution

Binomial Expansion:
(a+b)n=C0an+C1an1b+C2an2b2++Cranrbr++Cn1abn1+Cnbn{{\left( a+b \right)}^{n}}={{C}_{0}}{{a}^{n}}+{{C}_{1}}{{a}^{n-1}}b+{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\ldots +{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\ldots +{{C}_{n-1}}a{{b}^{n-1}}+{{C}_{n}}{{b}^{n}} , where C0,C1,...,Cn{{C}_{0}},{{C}_{1}},...,{{C}_{n}} are the Binomial Coefficients defined as Cr=nCr=n!r!(nr)!{{C}_{r}}{{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!(n-r)!} .
The total number of terms in the expansion is n+1n+1 .
The rth term in the expansion is Tr=Cranrbr{{T}_{r}}={{C}_{r}}{{a}^{n-r}}{{b}^{r}} .
The value of nCr^{n}{{C}_{r}} is always an integer.
For the terms of the expansion to be an integer, the powers xrx-r and rr should also be an integer because 5 and 7 are power free numbers.

Complete step-by-step answer:
Using the Binomial Expansion, the rth term of Tr{{T}_{r}} in the expansion of (25+76)642{{\left( 2\sqrt{5}+\sqrt[6]{7} \right)}^{642}} will be given as:
Tr=Cr(25)642r(76)r{{T}_{r}}={{C}_{r}}{{\left( 2\sqrt{5} \right)}^{642-r}}{{\left( \sqrt[6]{7} \right)}^{r}}
Since, 5=512\sqrt{5}={{5}^{\dfrac{1}{2}}} and 76=716\sqrt[6]{7}={{7}^{\dfrac{1}{6}}} , the above expression for Tr{{T}_{r}} can be written as:
Tr=Cr(2)642r(5)642r2(7)r6{{T}_{r}}={{C}_{r}}{{\left( 2 \right)}^{642-r}}{{\left( 5 \right)}^{\dfrac{642-r}{2}}}{{\left( 7 \right)}^{\dfrac{r}{6}}}
Tr=Cr(2)642r(5)321r2(7)r6{{T}_{r}}={{C}_{r}}{{\left( 2 \right)}^{642-r}}{{\left( 5 \right)}^{321-\dfrac{r}{2}}}{{\left( 7 \right)}^{\dfrac{r}{6}}}
For the term to be an integer, we must have 0r6420\le r\le 642 and r should be a multiple of 6.
The required values of r are, therefore, the terms of the following AP:
0,6,12,18,...,6420,6,12,18,...,642
i.e. 6×0,6×1,6×2,6×3,...,6×1076\times 0,6\times 1,6\times 2,6\times 3,...,6\times 107 .
∴ The total number of possible values of r are 108.
The correct answer option is D. 108.

Note: There are n integers from 1 to n, including both 1 and n.
The value of nCr^{n}{{C}_{r}} is always an integer.
ax=1ax{{a}^{-x}}=\dfrac{1}{{{a}^{x}}}, is not an integer unless a=1a=1 or x=0x=0 .
apq=apq{{a}^{\dfrac{p}{q}}}=\sqrt[q]{{{a}^{p}}} .