Solveeit Logo

Question

Question: The number of integers n for which \(3{x^3} - 25x + n = 0\) has three real roots is? \(\left( a \r...

The number of integers n for which 3x325x+n=03{x^3} - 25x + n = 0 has three real roots is?
(a)\left( a \right) 1
(b)\left( b \right) 25
(c)\left( c \right) 55
(d)\left( d \right) Infinite

Explanation

Solution

In this particular question use the concept that between two roots of derivative, a function has at least 1 root, so differentiate the given function and equate to zero and solve for x, then on these value of x calculate the value of function f (x), so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given equation:
3x325x+n=03{x^3} - 25x + n = 0
As we see that the highest power of x is 3, so it is a cubic equation.
Let, f(x)=3x325x+nf\left( x \right) = 3{x^3} - 25x + n
Now as we all know that between two roots of derivative, a function has at least 1 root.
To differentiate the given function and equate it to zero and solve for x, then on these values of x calculate the value of function f (x).
Now differentiate f (x) we have,
ddxf(x)=ddx(3x325x+n)\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 25x + n} \right)
Now as we know that, ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} so use this property in the above equation we have,
ddxf(x)=f(x)=3(3)x3125+0\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = 3\left( 3 \right){x^{3 - 1}} - 25 + 0
f(x)=9x225\Rightarrow f'\left( x \right) = 9{x^2} - 25
Now equate this to zero we have,
9x225=0\Rightarrow 9{x^2} - 25 = 0
9x2=25\Rightarrow 9{x^2} = 25
x2=259\Rightarrow {x^2} = \dfrac{{25}}{9}
Now take square root on both sides we have,
x=259=±53\Rightarrow x = \sqrt {\dfrac{{25}}{9}} = \pm \dfrac{5}{3}
Now double differentiate the function to check at which value function attains maxima or minima.
d2dx2f(x)=f(x)=ddxf(x)=ddx(9x225)=18x\Rightarrow \dfrac{{{d^2}}}{{d{x^2}}}f\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 25} \right) = 18x
So when, x=53x = \dfrac{5}{3}
f(53)=18(53)=+30\Rightarrow f''\left( {\dfrac{5}{3}} \right) = 18\left( {\dfrac{5}{3}} \right) = + 30 (Positive so it is minima)
And when, x=53x = - \dfrac{5}{3}
f(53)=18(53)=30\Rightarrow f''\left( { - \dfrac{5}{3}} \right) = 18\left( { - \dfrac{5}{3}} \right) = - 30 (Negative so it is maxima)
So the value of f (x) at these roots we have,
So when, x=53x = \dfrac{5}{3}
f(53)=3(53)325(53)+n\Rightarrow f\left( {\dfrac{5}{3}} \right) = 3{\left( {\dfrac{5}{3}} \right)^3} - 25\left( {\dfrac{5}{3}} \right) + n
f(53)=12591253+n\Rightarrow f\left( {\dfrac{5}{3}} \right) = \dfrac{{125}}{9} - \dfrac{{125}}{3} + n
f(53)=2509+n\Rightarrow f\left( {\dfrac{5}{3}} \right) = - \dfrac{{250}}{9} + n (Minimum value)
And when, x=53x = - \dfrac{5}{3}
f(53)=3(53)325(53)+n\Rightarrow f\left( { - \dfrac{5}{3}} \right) = 3{\left( { - \dfrac{5}{3}} \right)^3} - 25\left( { - \dfrac{5}{3}} \right) + n
f(53)=1259+1253+n\Rightarrow f\left( { - \dfrac{5}{3}} \right) = - \dfrac{{125}}{9} + \dfrac{{125}}{3} + n
f(53)=2509+n\Rightarrow f\left( { - \dfrac{5}{3}} \right) = \dfrac{{250}}{9} + n (Maximum value)

Now for the cubic equation to have three real roots f(53)>0f\left( {\dfrac{{ - 5}}{3}} \right) > 0 and f(53)<0f\left( {\dfrac{5}{3}} \right) < 0 as shown in the above figure.
Therefore, f(53)>02509+n>0f\left( { - \dfrac{5}{3}} \right) > 0 \Rightarrow \dfrac{{250}}{9} + n > 0
n>2509\Rightarrow n > \dfrac{{ - 250}}{9}
And
f(53)<02509+n<0f\left( {\dfrac{5}{3}} \right) < 0 \Rightarrow - \dfrac{{250}}{9} + n < 0
n<2509\Rightarrow n < \dfrac{{250}}{9}
Therefore,
2509<n<2509- \dfrac{{250}}{9} < n < \dfrac{{250}}{9}
27.77<n<27.77\Rightarrow - 27.77 < n < 27.77
Now we have to find out the integers value of n.
n[27,27]\Rightarrow n \in \left[ { - 27,27} \right] (I.e. closed interval from -27 to 27).
And the number of integer values from -27 to 27 is 55.
So there are 55 integers’ values of n for which the given cubic equation has 3 real roots.
So this is the required answer.
Hence option (C) is the correct answer.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall that if a function crosses the x-axis then there is the real root of the function, so if a function crosses n times the x-axis then there are n real roots of the function, and always recall the basic differentiation property which is stated above.