Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The number of integer value(s) of kk for which the expression x22(4k1)x+15k2{{x}^{2}}-2(4k-1)x+15{{k}^{2}} 2k7>0-2k-7>0 for every real number xx is/are

A

None

B

one

C

finitely many, but greater than 1

D

infinitely many

Answer

one

Explanation

Solution

Given, expression is x22(4k1)+x+15k22k7>0{{x}^{2}}-2(4k-1)+x+15{{k}^{2}}-2k-7>0
Its discriminant, D=b24acD={{b}^{2}}-4ac
=2(4k1)24×1×(15k22k7)={{\\{-2(4k-1)\\}}^{2}}-4\times 1\times (15{{k}^{2}}-2k-7)
=4(4k1)24(15k22k7)=4{{(4k-1)}^{2}}-4(15{{k}^{2}}-2k-7)
=4[(4k1)2(15k22k7)]=4[{{(4k-1)}^{2}}-(15{{k}^{2}}-2k-7)]
=4[16k28k+115k2+2k+7]=4[16{{k}^{2}}-8k+1-15{{k}^{2}}+2k+7]
=4[k26k+8]=4[{{k}^{2}}-6k+8]
=4[k24k2k+8=4(k4)(k2)]=4[{{k}^{2}}-4k-2k+8|=4|(k-4)(k-2)] Now, for real values of x, D<0D<0
\Rightarrow (k4)(k2)<0(k-4)(k-2)<0
\Rightarrow k<4k<4 or k>2k>2
\therefore Integer value of k is 3. Hence, number of integer value of k is noe.