Solveeit Logo

Question

Chemistry Question on Equilibrium

The number of grams/weight of NH4ClNH_4Cl required to be added to 3 liters of 0.01MNH30.01\, M\, NH_3 to prepare the buffer of pH=9.45pH=9.45 at temperature 298K298\, K (KbK_b for NH3NH_3 is 1.85×1051.85 \times 10^{-5})

A

3.53 gm

B

0.354 gm

C

4.55 gm

D

0.455gm

Answer

0.354 gm

Explanation

Solution

pOH=pKb+log[NH4Cl][NH3]\because pOH = pK _{ b }+\log \frac{\left[ NH _{4} Cl \right]}{\left[ NH _{3}\right]}
pOH=logKb+log[NH4Cl][NH3]pOH =-\log K_{b}+\log \frac{\left[ NH _{4} Cl \right]}{\left[ NH _{3}\right]}
(pKb=logKb)\left(\because p K_{b}=-\log K_{b}\right)

Also, pOH=14pH=149.45=4.55pOH =14- pH =14-9.45=4.55

and log[NH4Cl][NH3]Kb=log30.470\log \frac{\left[ NH _{4} Cl \right]}{\left[ NH _{3}\right] \cdot K_{b}}=\log 3 \approx 0.470

Thus, log1014(log109+log3)log[NH4Cl][NH3]Kb\log 10^{14}-\left(\log 10^{9}+\log 3\right) \approx \log \frac{\left[ NH _{4} Cl \right]}{\left[ NH _{3}\right] \cdot K_{b}}
log1014109×3=log[NH4Cl][NH3]Kb\Rightarrow \, \log \frac{10^{14}}{10^{9} \times 3}=\log \frac{\left[ NH _{4} Cl \right]}{\left[ NH _{3}\right] \cdot K_{b}}
1014109×3[NH4Cl][NH3]Kb\Rightarrow \frac{10^{14}}{10^{9} \times 3} \approx \frac{\left[ NH _{4} C l\right]}{\left[ NH _{3}\right] \cdot K_{b}}

or 1014×[NH3]Kh109×3\frac{10^{14} \times\left[ NH _{3}\right] \cdot K_{h}}{10^{9} \times 3}
=[NH4Cl]1014109×3×0.01×1.85×105=\left[ NH _{4} Cl \right] \approx \frac{10^{14}}{10^{9} \times 3} \times 0.01 \times 1.85 \times 10^{-5}
=[NH4Cl]0.354gm=\left[ NH _{4} Cl \right] \approx 0.354\,gm