Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The number of elements in the set S=θ[4π,4π]:3cos2(2θ)+6cos2(θ)10cos(2θ)+5=0S = \\{ \theta \in [-4\pi, 4\pi] : 3 \cos^2(2\theta) + 6 \cos^2(\theta) - 10\cos(2\theta) + 5 = 0 \\} is______.

Answer

The correct answer is: 32

3 \cos^2(2\theta) + 6 \cos^2(\theta) - 10\cos(2\theta) + 5 = 0$$-\frac{10(1+cos2θ)}{2}

3cos2(2θ)+cos2(θ)=03\cos^2(2\theta) + \cos^2(\theta) = 0

cos2(θ)=0orcos2(θ)=\cos^2(\theta) = 0 \quad \text{or} \quad \cos^2(\theta) = 13-\frac{1}{3}

As θ[0,π],cos(2θ)=132times\theta \in [0, \pi], \quad \cos(2\theta) = -\frac{1}{3} ⇒ 2 times

\theta \in [-4\pi, 4\pi], \quad \cos(2\theta) = -\frac{1}{3}$$-\frac{1}{3} 16 times

Similarly, cos(2θ)=0\cos(2\theta) = 0 16⇒ 16 times

∴ Total is 32 solutions.