Question
Question: The number of elements in the range of $f(x) = \left[\frac{x}{10}\right]\left[-\frac{10}{x}\right]$,...
The number of elements in the range of f(x)=[10x][−x10], x∈(0,50) are (where [] denotes the greatest integer function)
Answer
5
Explanation
Solution
For x∈(0,50), we break the domain into segments where the floor function values are constant:
-
When 0<x<10:
[10x]=0(since 0<10x<1)Hence, f(x)=0×[−x10]=0.
-
When 10≤x<20:
[10x]=1and[−x10]=−1(because −x10∈[−1,−0.5))Thus, f(x)=1×(−1)=−1.
-
When 20≤x<30:
[10x]=2,[−x10]=−1(since −x10∈[−0.5,−0.333…))So, f(x)=2×(−1)=−2.
-
When 30≤x<40:
[10x]=3,[−x10]=−1Hence, f(x)=3×(−1)=−3.
-
When 40≤x<50:
[10x]=4,[−x10]=−1So, f(x)=4×(−1)=−4.
Distinct values in the range: {0,−1,−2,−3,−4}
Thus, the number of elements in the range is 5.