Solveeit Logo

Question

Question: The number of distinct real roots of the equation, \(\left| {\begin{array}{*{20}{c}} {\cos x}&{\...

The number of distinct real roots of the equation, \left| {\begin{array}{*{20}{c}} {\cos x}&{\sin x}&{\sin x} \\\ {\sin x}&{\cos x}&{\sin x} \\\ {\sin x}&{\sin x}&{\cos x} \end{array}} \right| = 0 in the interval [π4,π4]\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] is/are:
A. 33
B. 22
C. 11
D. 44

Explanation

Solution

At first, use the row or column operations to simplify the determinant as much as you can. Once it is simplified, open the determinant and equate it to 00. Find the value of xx such that the equation satisfies. Count the number of values.

Complete step-by-step answer:
\left| {\begin{array}{*{20}{c}} {\cos x}&{\sin x}&{\sin x} \\\ {\sin x}&{\cos x}&{\sin x} \\\ {\sin x}&{\sin x}&{\cos x} \end{array}} \right| = 0

Using column operator, C1C1C2{C_1} \to {C_1} - {C_2}
\left| {\begin{array}{*{20}{c}} {\cos x - \sin x}&{\sin x}&{\sin x} \\\ {\sin x - \cos x}&{\cos x}&{\sin x} \\\ 0&{\sin x}&{\cos x} \end{array}} \right| = 0

Using column operator, C2C2C3{C_2} \to {C_2} - {C_3}
\left| {\begin{array}{*{20}{c}} {\cos x - \sin x}&0&{\sin x} \\\ {\sin x - \cos x}&{\cos x - \sin x}&{\sin x} \\\ 0&{\sin x - \cos x}&{\cos x} \end{array}} \right| = 0

Taking sinxcosx\sin x - \cos x common from C1{C_1}
(sinxcosx)(\sin x - \cos x) \left| {\begin{array}{*{20}{c}} { - 1}&0&{\sin x} \\\ 1&{\cos x - \sin x}&{\sin x} \\\ 0&{\sin x - \cos x}&{\cos x} \end{array}} \right| = 0

Taking (sinxcosx)(\sin x - \cos x) from C2{C_2}
(sinxcosx)2{(\sin x - \cos x)^2} \left| {\begin{array}{*{20}{c}} { - 1}&0&{\sin x} \\\ 1&{ - 1}&{\sin x} \\\ 0&1&{\cos x} \end{array}} \right| = 0

Now the determinant is simplified.
So, we will open it.
(sinxcosx)2{(\sin x - \cos x)^2} [1(cosxsinx)+0+sinx]=0\left[ { - 1( - \cos x - \sin x) + 0 + \sin x} \right] = 0
(sinxcosx)2{(\sin x - \cos x)^2} [cosx+2sinx]=0\left[ {\cos x + 2\sin x} \right] = 0

At least one of the terms must be 00 in order to satisfy the equation.
Hence, (sinxcosx)2{(\sin x - \cos x)^2} =0 = 0 or [cosx+2sinx]=0\left[ {\cos x + 2\sin x} \right] = 0
sinx=cosx\sin x = \cos x or 2sinx=cosx2\sin x = -\cos x
We know sinxcos=tanx\dfrac{\sin x}{\cos } = \tan x
Simplifying we get tanx=1\tan x= 1 or tanx=12\tan x = - \dfrac{1}{2}
x=π4x = \dfrac{\pi }{4} or x=tan1(12)x = {\tan ^{ - 1}}( - \dfrac{1}{2})

Now range of xx is [π4,π4]\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]
Hence possible values of xx are π4\dfrac{\pi }{4}and tan1(12){\tan ^{ - 1}}( - \dfrac{1}{2})
Hence there are two distinct real roots.

So, the correct answer is “Option B”.

Note: Students should be very careful about the signs while performing row or column operation.We have to carefully analyse which operation should be performed .Students should remember trigonometric ratios and method of calculating the determinant value for solving these types of problems.