Question
Mathematics Question on Algebra
The number of distinct real roots of the equation ∣x+1∣∣x+3∣−4∣x+2∣+5=0, is _______.
Answer
Given equation:
∣x+1∣∣x+3∣−4∣x+2∣+5=0.
To solve this, we break it into different cases based on the values of x that change the absolute values:
Case 1: x≤−3
(x+1)(x+3)+4(x+2)+5=0.
Simplifying:
x2+4x+3+4x+8+5=0⟹x2+8x+16=0⟹(x+4)2=0.
x=−4.
Case 2: −3<x≤−2
−(x+1)(x+3)+4(x+2)+5=0.
Simplifying:
−x2−4x−3+4x+8+5=0⟹−x2+10=0⟹x2=10.
x=±10.
Case 3: −2<x≤−1
−(x+1)(x+3)−4(x+2)+5=0.
Simplifying:
−x2−4x−3−4x−8+5=0⟹−x2−8x−6=0⟹x2+8x+6=0.
Solving using the quadratic formula:
x=2−8±64−24=2−8±40=−4±10.
Case 4: x>−1
x2+4x+3−4x−8+5=0.
Simplifying:
x2=0⟹x=0.
The number of distinct real roots is:
Total Solutions = 2.
Answer: 2.