Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

The number of distinct real roots of the equation, cosxsinxsinx sinxcosxsinx sinxsinxcosx=0\begin{vmatrix}\cos x&\sin x &\sin x\\\ \sin x&\cos x&\sin x\\\ \sin x&\sin x&\cos x\end{vmatrix}= 0 in the interval [π4,π4] \left[- \frac{\pi}{4}, \frac{\pi}{4}\right] is :

A

4

B

3

C

2

D

1

Answer

2

Explanation

Solution

cosxsinxsinx sinxcosxsinx sinxsinxcosx=0\begin{vmatrix}cos\,x&sin\,x&sin\,x\\\ sin\,x&cos\,x&sin\,x\\\ sin\,x&sin\,x&cos\,x\end{vmatrix}=0
R1R1R2R_{1} \rightarrow R_{1} -R_{2}
R2R2R3R_{2} \rightarrow R_{2}-R_{3}
cosxsinxsinxcosx0 0cosxsinxsinxcosx sinxsinxcosx=0\begin{vmatrix}cos\,x-sin\,x&sin\,x-cos\,x&0\\\ 0&cos\,x-sin\,x&sin\,x-cos\,x\\\ sin\,x&sin\,x&cos\,x\end{vmatrix}=0
C2C2+C1C_{2} \rightarrow C_{2}+C_{1}
(cosxsinx)100 0cosxsinxsinxcosx sinx2sinxcosx=0\left(cos\,x-sin\,x\right)\begin{vmatrix}1&0&0\\\ 0&cos\,x-sin\,x&sin\,x-cos\,x\\\ sin\,x&2\,sin\,x&cos\,x\end{vmatrix}=0
Expanding using first row
(2sinx+cosx)(sinxcosx)2=0\left(2\,sin\,x+cos\,x\right)\left(sin\,x-cos\,x\right)^{2}=0
tanx=12tan\,x=\cdot\frac{1}{2} or tanx=1tan\,x=1
Hence two solutions are there in [π4,π4]\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]