Question
Question: The number of distinct real roots of \(\left| \begin{matrix} \sin x & \cos x & \cos x \\ \cos x & \s...
The number of distinct real roots of sinxcosxcosxcosxsinxcosxcosxcosxsinx=0 in the interval −4π≤x≤4π is
A
0
B
2
C
1
D
3
Answer
1
Explanation
Solution
1 & \cos x & \cos x \\
1 & \sin x & \cos x \\
1 & \cos x & \sin x
\end{matrix} \right| = 0$$
Applying, $R_{2} \rightarrow R_{2} - R_{1}$ and $R_{3} \rightarrow R_{3} - R_{1}$
$$(2\cos x + \sin x)\left| \begin{matrix}
1 & \cos x & \cos x \\
0 & \sin x - \cos x & 0 \\
0 & 0 & \sin x - \cos x
\end{matrix} \right| = 0$$
⇒ $(2\cos x + \sin x)(\sin x - \cos x)^{2} = 0$
$\therefore\tan x = - 2,1$ But $\tan x \neq - 2$ in $\left\lbrack - \frac{\pi}{4},\frac{\pi}{4} \right\rbrack$. Hence
$$\tan x = 1 \Rightarrow x = \frac{\pi}{4}$$