Solveeit Logo

Question

Question: The number of distinct real roots of \(\left| \begin{matrix} \sin x & \cos x & \cos x \\ \cos x & \s...

The number of distinct real roots of sinxcosxcosxcosxsinxcosxcosxcosxsinx=0\left| \begin{matrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{matrix} \right| = 0 in the interval π4xπ4- \frac{\pi}{4} \leq x \leq \frac{\pi}{4} is

A

0

B

2

C

1

D

3

Answer

1

Explanation

Solution

1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{matrix} \right| = 0$$ Applying, $R_{2} \rightarrow R_{2} - R_{1}$ and $R_{3} \rightarrow R_{3} - R_{1}$ $$(2\cos x + \sin x)\left| \begin{matrix} 1 & \cos x & \cos x \\ 0 & \sin x - \cos x & 0 \\ 0 & 0 & \sin x - \cos x \end{matrix} \right| = 0$$ ⇒ $(2\cos x + \sin x)(\sin x - \cos x)^{2} = 0$ $\therefore\tan x = - 2,1$ But $\tan x \neq - 2$ in $\left\lbrack - \frac{\pi}{4},\frac{\pi}{4} \right\rbrack$. Hence $$\tan x = 1 \Rightarrow x = \frac{\pi}{4}$$