Solveeit Logo

Question

Mathematics Question on Determinants

The number of distinct real roots of sinxcosxcosx cosxsinxcosx cosxcosxsinx\begin{vmatrix}\sin x&\cos x&\cos x\\\ \cos x&\sin x&\cos x\\\ \cos x &\cos x&\sin x\end{vmatrix} in the interval [π4,π4]\left[\frac{-\pi}{4}, \frac{\pi}{4}\right] is

A

0

B

1

C

2

D

5

Answer

1

Explanation

Solution

We have, sinxcosxcosx cosxsinxcosx cosxcosxsinx\begin{vmatrix}\sin x&\cos x&\cos x\\\ \cos x&\sin x&\cos x\\\ \cos x &\cos x&\sin x\end{vmatrix}
Applying C1C1+C2+C3C_1 \to C_1 + C_2 + C_3, we get
sinx+2cosxcosxcosx sinx+2cosxsinxcosx sinx+2cosxcosxsinx\begin{vmatrix}\sin x + 2\cos x&\cos x&\cos x\\\ \sin x + 2\cos x&\sin x&\cos x\\\ \sin x + 2\cos x &\cos x&\sin x\end{vmatrix}
 (sinx+2cosx)1cosxcosx 1sinxcosx 1cosxsinx\Rightarrow \ (\sin x + 2 \cos x) \begin{vmatrix} 1 &\cos x&\cos x\\\ 1 &\sin x&\cos x\\\ 1 &\cos x&\sin x\end{vmatrix}
Applying R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1, we get
 (sinx+2cosx)1cosxcosx 0sinxcosx0\00sinxcosx\Rightarrow \ (\sin x + 2 \cos x) \begin{vmatrix} 1 &\cos x&\cos x\\\ 0 &\sin x - \cos x &0 \\\0 &0 &\sin x - \cos x\end{vmatrix}
Now expanding along C1C_1, we get
(sinx+2cosx)(sinxcosx)2=0\Rightarrow (\sin x + 2 \cos x) (\sin x - \cos x)2 = 0
Either sinx+2cosx=0\sin x + 2 \cos x = 0 or sinxcosx=0\sin x - \cos x = 0
 sinxcosx=2\Rightarrow \ \frac{\sin x}{\cos x} = -2 or sinxcosx=1\frac{\sin x}{\cos x} =1
 tanx=2\Rightarrow\ \tan x=-2 or tanx=1\tan x=1
This is not possible case in (π4,π4) \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)
So, tanx=1x=π4\tan x = 1 \Rightarrow x = \frac{\pi}{4} is the solution
Number of roots lying in (π4,π4) \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) is 1