Question
Mathematics Question on Determinants
The number of distinct real roots of sinx cosx cosxcosxsinxcosxcosxcosxsinx in the interval [4−π,4π] is
A
0
B
1
C
2
D
5
Answer
1
Explanation
Solution
We have, sinx cosx cosxcosxsinxcosxcosxcosxsinx
Applying C1→C1+C2+C3, we get
sinx+2cosx sinx+2cosx sinx+2cosxcosxsinxcosxcosxcosxsinx
⇒ (sinx+2cosx)1 1 1cosxsinxcosxcosxcosxsinx
Applying R2→R2−R1 and R3→R3−R1, we get
⇒ (sinx+2cosx)1 0\0cosxsinx−cosx0cosx0sinx−cosx
Now expanding along C1, we get
⇒(sinx+2cosx)(sinx−cosx)2=0
Either sinx+2cosx=0 or sinx−cosx=0
⇒ cosxsinx=−2 or cosxsinx=1
⇒ tanx=−2 or tanx=1
This is not possible case in (−4π,4π)
So, tanx=1⇒x=4π is the solution
Number of roots lying in (−4π,4π) is 1