Question
Question: The number of distinct real number pairs (a, b) such that a + b ∈ integers and a² + b² = 2 is/are...
The number of distinct real number pairs (a, b) such that a + b ∈ integers and a² + b² = 2 is/are

A
10
B
8
C
2
D
4
Answer
8
Explanation
Solution
We have the circle:
a2+b2=2.
Let (a,b)=(2cosθ,2sinθ). Then
a+b=2(cosθ+sinθ)=2⋅2sin(θ+4π)=2sin(θ+4π).
For a+b to be an integer, let
2sin(θ+4π)=k,k∈Z.
Since sin takes values in [−1,1], we must have:
−2≤k≤2⟹k∈{−2,−1,0,1,2}.
For each k:
- If ∣k∣=2: sin(θ+4π)=±1 has one solution in [0,2π).
- For k=−1,0,1: the equation sin(θ+4π)=2k yields two solutions.
Thus, the total number of pairs is:
1+2+2+2+1=8.