Solveeit Logo

Question

Question: The number of distinct real number pairs (a, b) such that a + b ∈ integers and a² + b² = 2 is/are...

The number of distinct real number pairs (a, b) such that a + b ∈ integers and a² + b² = 2 is/are

A

10

B

8

C

2

D

4

Answer

8

Explanation

Solution

We have the circle:

a2+b2=2a^2+b^2=2.

Let (a,b)=(2cosθ,2sinθ)(a,b)=(\sqrt{2}\cos\theta,\sqrt{2}\sin\theta). Then

a+b=2(cosθ+sinθ)=22sin(θ+π4)=2sin(θ+π4)a+b=\sqrt{2}(\cos\theta+\sin\theta)=\sqrt{2}\cdot\sqrt{2}\sin\left(\theta+\frac{\pi}{4}\right)=2\sin\left(\theta+\frac{\pi}{4}\right).

For a+ba+b to be an integer, let

2sin(θ+π4)=k,kZ2\sin\left(\theta+\frac{\pi}{4}\right)=k, \quad k\in \mathbb{Z}.

Since sin\sin takes values in [1,1][-1,1], we must have:

2k2k{2,1,0,1,2}-2\leq k\leq 2 \quad \Longrightarrow \quad k\in \{-2,-1,0,1,2\}.

For each kk:

  • If k=2|k|=2: sin(θ+π4)=±1\sin\left(\theta+\frac{\pi}{4}\right)=\pm 1 has one solution in [0,2π)[0,2\pi).
  • For k=1,0,1k=-1, 0, 1: the equation sin(θ+π4)=k2\sin\left(\theta+\frac{\pi}{4}\right)=\frac{k}{2} yields two solutions.

Thus, the total number of pairs is:

1+2+2+2+1=81+2+2+2+1=8.