Solveeit Logo

Question

Question: The number of different ways in which five ‘alike dashes’ and eight alike dots’ can be arranged usin...

The number of different ways in which five ‘alike dashes’ and eight alike dots’ can be arranged using only seven of these ‘dashes’ and ‘dots’ is:
A). 350 B) 120. C) 1287 D) None of these.

Explanation

Solution

Hint : Make the column first for dashes and second for dots and fill in such a way that the total is 7 and then use combination.

Complete step-by-step answer:
As we can see in the question that dashes and dots are alike.
We have to arrange these in such a way that their sum is always 7 for any row.
By hit and trial method we will be filling the table.
Therefore the table will look like this.
Dashes                        Dots                        Sum           5                                      2                          7           4                                      3                          7            3                                      4                          7           2                                      5                          7           1                                      6                          7           0                                      7                        7 \begin{gathered} \underline {{\text{Dashes}}} \;\;\;\;\;\;\;\;\;\;\;\;\underline {{\text{Dots}}} \;\;\;\;\;\;\;\;\;\;\;\;\underline {{\text{Sum}}} \\\ \;\;\;\;\;5\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\;\;\;\; \to \;\;\;\;\;\;\;\;\;7 \\\ \;\;\;\;\;4\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;3\;\;\;\; \to \;\;\;\;\;\;\;\;\;7\ \\\ \;\;\;\;\;3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\;\;\;\; \to \;\;\;\;\;\;\;\;\;7 \\\ \;\;\;\;\;2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;5\;\;\;\; \to \;\;\;\;\;\;\;\;\;7 \\\ \;\;\;\;\;1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;6\;\;\;\; \to \;\;\;\;\;\;\;\;\;7 \\\ \;\;\;\;\;0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;7\;\;\;\; \to \;\;\;\;\;\;\;\;7 \\\ \end{gathered}
Now, we have to make a combination for every row.

{\text{Dashes}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{Dots}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{Aesangant(combination)}} \\\ \;\;\;\;\;5\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_2}}} \\\ \;\;\;\;\;4\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_3}}} \\\ \;\;\;\;\;3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_4}}} \\\ \;\;\;\;\;2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;5\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_5}}} \\\ \;\;\;\;\;1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;6\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_6}}} \\\ \;\;\;\;\;0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;7\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{7_{{C_7}}} \\\ \end{gathered} $$ Therefore the total no of ways is the sum of all the arrangements it, ${7_{{C_2}}} + {7_{{C_3}}} + {7_{{C_4}}} + {7_{{C_5}}} + {7_{{C_6}}}$ $\begin{gathered} = 21+35+35+21+7+1 = 120 \end{gathered} $ $\therefore $ the total no of ways is which combination of total 7 works from dashes and dots is 120. Note: In this type of question, use the table to make the information and then use the correct formula and don’t miss any calculation, it is very important for permutation and combination.