Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The number of critical points of the function f(x)=(x2)2/3(2x+1)f(x) = (x - 2)^{2/3}(2x + 1) is:

A

2

B

0

C

1

D

3

Answer

2

Explanation

Solution

Solution:

The given function is f(x)f(x). Its derivative is:

f(x)=23(x2)1/3(2x+1)+(x2)2/3(2).f'(x) = \frac{2}{3}(x - 2)^{-1/3}(2x + 1) + (x - 2)^{2/3}(2).

Simplify the numerator:

f(x)=23(2x+1)+3(x2)(x2)1/3.f'(x) = \frac{2}{3} \cdot \frac{(2x + 1) + 3(x - 2)}{(x - 2)^{1/3}}.

Expand and simplify:

(2x+1)+3(x2)=5x5.(2x + 1) + 3(x - 2) = 5x - 5.

Thus:

f(x)=2(5x5)3(x2)1/3.f'(x) = \frac{2(5x - 5)}{3(x - 2)^{1/3}}.

Critical points:

  1. Set f(x)=0f'(x) = 0:
  2. The derivative f(x)f'(x) is undefined at x=2x = 2.

Hence, the critical points are:

x=1andx=2.x = 1 \quad \text{and} \quad x = 2.

Final Answer: 2.