Solveeit Logo

Question

Question: The number of critical points of the function\[f\left( x \right) = \left| {x - 1} \right|\left| {x -...

The number of critical points of the functionf(x)=x1x2f\left( x \right) = \left| {x - 1} \right|\left| {x - 2} \right|is
A.1
B.2
C.3
D.None of these

Explanation

Solution

First we define the function in interval x<1x < 1, 1x<21 \leqslant x < 2and x2x \geqslant 2after that differentiate the function with respect to x in given interval. If the value of x lies in the interval then value of x is our critical point if not then it will not be a critical point. After that we calculate the left and right hand derivative of a function at branch point if the derivative does not exist at branch point then the point is also known as critical point.

Complete step-by-step answer:
We have given f(x)=x1x2f\left( x \right) = \left| {x - 1} \right|\left| {x - 2} \right|
Define f\left( x \right) = \left\\{ \left( {x - 1} \right)\left( {x - 2} \right);x < 1 \\\ \- \left( {x - 1} \right)\left( {x - 2} \right);1 \leqslant x < 2 \\\ \left( {x - 1} \right)\left( {x - 2} \right);x \geqslant 2 \\\ \right.
\Rightarrow $$$$f\left( x \right) = \left\\{ {x^2} - 3x + 2;x < 1 \\\ \- \left( {{x^2} - 3x + 2} \right);1 \leqslant x < 2 \\\ {x^2} - 3x + 2;x \geqslant 2 \\\ \right.
For x<1x < 1we have,
f(x)=x23x+2f\left( x \right) = {x^2} - 3x + 2
Differentiating with respect to x we get,
f(x)=2x3f'\left( x \right) = 2x - 3
As we know to find critical points we have to equate derivatives of f(x)f\left( x \right) with zero.
So, f(x)=0f'\left( x \right) = 0
2x3=0\Rightarrow 2x - 3 = 0
x=32\Rightarrow x = \dfrac{3}{2}
As x=32=1.5x = \dfrac{3}{2} = 1.5does not lies in x<1x < 1
so x=32x = \dfrac{3}{2} is not a critical point of f(x) for x<1x < 1.
Which implies that whenx<1x < 1the function f(x)f\left( x \right)does not have any critical point.
For 1x<21 \leqslant x < 2we have,
f(x)=(x23x+2)f\left( x \right) = - ({x^2} - 3x + 2)
Differentiating with respect to x we get,
f(x)=(2x3)f'\left( x \right) = - \left( {2x - 3} \right)
f(x)=2x+3\Rightarrow f'\left( x \right) = - 2x + 3
As we know to find critical points we have to equate derivatives of f(x)f\left( x \right) with zero.
So,f(x)=0f'\left( x \right) = 0
2x+3=0\Rightarrow - 2x + 3 = 0
2x=3\Rightarrow 2x = 3
x=32\Rightarrow x = \dfrac{3}{2}
As x=32x = \dfrac{3}{2}lies between1x<21 \leqslant x < 2.
So, x=32x = \dfrac{3}{2}is a critical point of f(x) in the interval 1x<21 \leqslant x < 2.
For x2x \geqslant 2we have,
f(x)=x23x+2f\left( x \right) = {x^2} - 3x + 2
Differentiating with respect to x we get,
f(x)=2x3f'\left( x \right) = 2x - 3
As we know to find critical points we have to equate derivatives of f(x)f\left( x \right) with zero.
So, f(x)=0f'\left( x \right) = 0
2x3=0\Rightarrow 2x - 3 = 0
x=32\Rightarrow x = \dfrac{3}{2}=1.5
As 1.5<21.5 < 2it will not lie in the interval x2x \geqslant 2
So, x=32x = \dfrac{3}{2} is not a critical point of f(x) forx2x \geqslant 2.
Which implies that when x2x \geqslant 2 the function f(x)f\left( x \right)does not have any critical point.
Now, we calculate the left and right hand derivative of a function at branch point if the derivative does not exist then the point is known as critical point.

2x - 3;x < 1 \\\ \- \left( {2x - 3} \right);1 \leqslant x < 2 \\\ 2x - 3;x \geqslant 2 \\\ \right.$$ For $$x = 1$$ Consider, $$Lf'\left( x \right) = $$$$2x - 3$$ $$ \ldots \left( 1 \right)$$ Now, put x=1 in equation (1) $$ \Rightarrow Lf'\left( 1 \right) = 2\left( 1 \right) - 3$$ $$ \Rightarrow Lf'\left( 1 \right) = - 1$$ $$Rf'\left( x \right) = - \left( {2x - 3} \right)$$ $$ \ldots \left( 2 \right)$$ Now, put x=1 in equation (2) $$ \Rightarrow Rf'\left( 1 \right) = - \left( {2\left( 1 \right) - 3} \right)$$ $$ \Rightarrow Rf'\left( 1 \right) = - \left( {2 - 3} \right)$$ $$ \Rightarrow Rf'\left( 1 \right) = - \left( { - 1} \right)$$ $$ \Rightarrow Rf'\left( 1 \right) = 1$$ $$ \Rightarrow Lf'\left( 1 \right) \ne Rf'\left( 1 \right)$$ $$ \Rightarrow $$$$f'\left( 1 \right)$$ does not exist. Similarly, Now we calculate for$$x = 2$$ Consider, $$Lf'\left( x \right) = - \left( {2x - 3} \right)$$ $$ \ldots \left( 3 \right)$$ Put $$x = 2$$in equation (3) $$ \Rightarrow Lf'\left( 2 \right) = - \left( {2\left( 2 \right) - 3} \right)$$ $$ \Rightarrow Lf'\left( 2 \right) = - \left( {4 - 3} \right)$$ $$ \Rightarrow Lf'\left( 2 \right) = - 1$$ $$Rf'\left( x \right) = 2x - 3$$ $$ \ldots \left( 4 \right)$$ Put $$x = 2$$in equation (4) $$ \Rightarrow Rf'\left( 2 \right) = 2\left( 2 \right) - 3$$ $$ \Rightarrow Rf'\left( x \right) = 4 - 3$$ $$ \Rightarrow Rf'\left( x \right) = 1$$ $$ \Rightarrow Lf'\left( 2 \right) \ne Rf'\left( 2 \right)$$ $$ \Rightarrow $$$$f'\left( 2 \right)$$ does not exist. Therefore, the total number of critical points is 3. Critical points of $$f\left( x \right) = \left| {x - 1} \right|\left| {x - 2} \right|$$ are $$\left\\{ {1,2,\dfrac{3}{2}} \right\\}$$ Hence, option C. 3 is the correct answer. **Note:** Critical point of a function: ‘When dealing with function of a real variable a critical point is a point in the domain of the function where the function is either not differentiable or the derivative is equal to zero.’