Solveeit Logo

Question

Question: The number of common tangents to the circles \(x ^ { 2 } + y ^ { 2 } = 4\) and \(x ^ { 2 } + y ^ { 2...

The number of common tangents to the circles x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and x2+y26x8y=24x ^ { 2 } + y ^ { 2 } - 6 x - 8 y = 24 is

A

0

B

1

C

3

D

4

Answer

1

Explanation

Solution

Circles S1x2+y2=(2)2S _ { 1 } \equiv x ^ { 2 } + y ^ { 2 } = ( 2 ) ^ { 2 } and

\therefore

Centres C2=(3,4)C _ { 2 } = ( 3,4 ) and radii r2=7r _ { 2 } = 7

C1C2=(3)2+(4)2=5C _ { 1 } C _ { 2 } = \sqrt { ( 3 ) ^ { 2 } + ( 4 ) ^ { 2 } } = 5, r2r1=72=5r _ { 2 } - r _ { 1 } = 7 - 2 = 5

\therefore C1C2=r2r1C _ { 1 } C _ { 2 } = r _ { 2 } - r _ { 1 } i.e. circles touch internally.

Hence there is only one common tangent.