Solveeit Logo

Question

Mathematics Question on Circle

The number of common tangents to circle x2+y2+2x+8y23=0x^{2}+y^{2}+2 x+8 y-23=0 and x2+y24x10y+9=0x^{2}+y^{2}-4 x-10 y+9=0, is.

A

1

B

3

C

2

D

none of these

Answer

2

Explanation

Solution

S1:x2+y2+2x+8y23=0S 1: x ^{2}+ y ^{2}+2 x +8 y -23=0 C1=(1,4),r12=(1)2+(4)2+23=210C_{1}=(-1,-4), r_{1}^{2}=\sqrt{(-1)^{2}+(-4)^{2}+23}=2 \sqrt{10} S2 : x2+y24x10y+9=0x^{2}+y^{2}-4 x-10 y+9=0 C2=(2,5),r22=(2)2+(5)29=25C_{2}=(2,5), r_{2}^{2}=\sqrt{(2)^{2}+(5)^{2}-9}=2 \sqrt{5} C1C2=32+92=90=310C_{1} C_{2}=\sqrt{3^{2}+9^{2}}=\sqrt{90}=3 \sqrt{10} r1+r2=210+25=10(2+2)r_{1}+r_{2}=2 \sqrt{10}+2 \sqrt{5}=\sqrt{10}(2+\sqrt{2}) 310(22)103 \sqrt{10}(2-\sqrt{2}) \sqrt{10} r1r2<C1C2<r1+r2\left| r _{1}- r _{2}\right|< C _{1} C _{2}< r _{1}+ r _{2} Only 22 common tangents.