Solveeit Logo

Question

Question: The number of all possible triplets \(\left( a_{1},a_{2},a_{3} \right)\) such than \(a_{1} + a_{2}\c...

The number of all possible triplets (a1,a2,a3)\left( a_{1},a_{2},a_{3} \right) such than a1+a2cos2x+a3sin2x=0a_{1} + a_{2}\cos 2x + a_{3}\sin^{2}x = 0 for all xxis

A

0

B

1

C

3

D

Infinite

Answer

Infinite

Explanation

Solution

The given equation can be written as

a1+a2cos2x+a32(1cos2x)=0a_{1} + a_{2}\cos 2x + \frac{a_{3}}{2}\left( 1 - \cos 2x \right) = 0

(a1+a32)+(a2a32)cos2x=0\left( a_{1} + \frac{a_{3}}{2} \right) + \left( a_{2} - \frac{a_{3}}{2} \right)\cos 2x = 0which is zero for all values of x.

If a1=a32=a2a_{1} = - \frac{a_{3}}{2} = - a_{2}

Or a1=k2,a2=k2a_{1} = - \frac{k}{2},a_{2} = \frac{k}{2}, a3=ka_{3} = kfor any kRk \in R

Hence the required number of triplets is infinite.