Question
Question: The number of 4 letters word that can be formed using the letter of the word COMBINATION is A.2436...
The number of 4 letters word that can be formed using the letter of the word COMBINATION is
A.2436
B.2454
C.1698
D.498
Solution
Here, we will use the selection that all the 4 are different using the combinations
n \,}}\\! \right| }}{{\left. {\underline {\, r \,}}\\! \right| \cdot \left. {\underline {\, {n - r} \,}}\\! \right| }}$$, where $$n$$ is the number of items, and $$r$$ represents the number of items being chosen. Then simplify to find the required value. _**Complete step-by-step answer:**_ We are given that the word is COMBINATION. Since we know that some of the letters are repeated, first we will count the letters in the word 1 C’s, 1 M’s, 1 B’s 1 A’s, 1 T’s, 2 O’s, 2 I’s and 2 N’s. CASE 1: When 4 letters are distinct, then we will have $$ \Rightarrow {}^8{C_4} \times 4!$$ Using the formula for the combinations is $${}^n{C_r} = \dfrac{{\left. {\underline {\, n \,}}\\! \right| }}{{\left. {\underline {\, r \,}}\\! \right| \cdot \left. {\underline {\, {n - r} \,}}\\! \right| }}$$, where $$n$$ is the number of items, and $$r$$ represents the number of items being chosen in the above equation, we get\Rightarrow \dfrac{{8!}}{{4!\left( {8 - 4} \right)!}} \times 4! \\
\Rightarrow \dfrac{{8!}}{{4!4!}} \times 4! \\
\Rightarrow \dfrac{{8 \times 7 \times 6 \times 5 \times 4!}}{{4!4!}} \times 4! \\
\Rightarrow 8 \times 7 \times 6 \times 5 \\
\Rightarrow 1680{\text{ ......eq.(1)}} \\
\Rightarrow \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{1!2!}} \times \dfrac{{4!}}{{2!}} \times \dfrac{{7!}}{{2!5!}} \\
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2!}} \times \dfrac{{7 \times 6 \times 5!}}{{2 \times 5!}} \\
\Rightarrow \dfrac{3}{1} \times 12 \times \dfrac{{7 \times 6}}{2} \\
\Rightarrow 3 \times 12 \times 21 \\
\Rightarrow 756{\text{ ......eq.(2)}} \\
\Rightarrow \dfrac{{3!}}{{2!\left( {3 - 2} \right)!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\Rightarrow \dfrac{{3!}}{{2!1!}} \times \dfrac{{4!}}{{2! \times 2!}} \\
\Rightarrow \dfrac{{3 \times 2!}}{{1!2!}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} \\
\Rightarrow \dfrac{3}{1} \times \dfrac{{4 \times 3}}{2} \\
\Rightarrow 3 \times 6 \\
\Rightarrow 18{\text{ ......eq.(3)}} \\
\Rightarrow 1680 + 756 + 18 \\
\Rightarrow 2454{\text{ ways}} \\