Solveeit Logo

Question

Question: The number \(k\) is such that \[\tan \\{ {\tan ^{ - 1}}\left( 2 \right) + {\tan ^{ - 1}}\left( {20k}...

The number kk is such that tantan1(2)+tan1(20k)=k\tan \\{ {\tan ^{ - 1}}\left( 2 \right) + {\tan ^{ - 1}}\left( {20k} \right)\\} = k. Then the sum of all possible values of kk is-
A.1940 - \dfrac{{19}}{{40}}
B.2140 - \dfrac{{21}}{{40}}
C.0
D.15\dfrac{1}{5}

Explanation

Solution

Hint: We will first simplify the given expression using the formula tan1x+tan1y=tan1(xy1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 - xy}}} \right) and tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta . We will get an equation in kk.
Now, find the sum of values of kk using the condition that if the equation is ax2+bx+c=0a{x^2} + bx + c = 0, then the sum of all the roots of the equation is given by ba - \dfrac{b}{a}.

Complete step-by-step answer:
First of all we will simplify the inner bracket of the given expression using the formula,
tan1x+tan1y=tan1(xy1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 - xy}}} \right)
Therefore, we can rewrite, tan1(2)+tan1(20k){\tan ^{ - 1}}\left( 2 \right) + {\tan ^{ - 1}}\left( {20k} \right) as tan1(2+20k12(20k))=tan1(2+20k140k){\tan ^{ - 1}}\left( {\dfrac{{2 + 20k}}{{1 - 2\left( {20k} \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2 + 20k}}{{1 - 40k}}} \right)
Also, tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta
Thus,
tan(tan1(2+20k140k))=k (2+20k140k)=k  \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{{2 + 20k}}{{1 - 40k}}} \right)} \right) = k \\\ \left( {\dfrac{{2 + 20k}}{{1 - 40k}}} \right) = k \\\
On simplifying we get,
2+20k=k40k2 40k2+19k+2=0  2 + 20k = k - 40{k^2} \\\ 40{k^2} + 19k + 2 = 0 \\\
If the equation is ax2+bx+c=0a{x^2} + bx + c = 0, then the sum of all the roots of the equation is given by ba - \dfrac{b}{a}
Hence, sum of all the possible values of kk is 1940 - \dfrac{{19}}{{40}}
Hence, option A is correct.

Note: The formula tan1x+tan1y=tan1(xy1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 - xy}}} \right) will help in simplifying the question.
If ax2+bx+c=0a{x^2} + bx + c = 0, then the sum of all the roots of the equation is given by ba - \dfrac{b}{a} and the product of roots is given by ca\dfrac{c}{a}