Solveeit Logo

Question

Physics Question on Electric Current

The number density of free electrons in a copper conductor is 8.5×1028m38.5 \times 10^{28} \cdot m ^{-3}. How long does an electron take to drift from one end of a wire 3.0m3.0\, m long to its other end? The area of crosssection of the wire is 2.0×106m22.0 \times 10^{-6}\, m ^{2} and it is carrying a current of 3.0A3.0\,A.

A

8.1×104s8.1\times 10^{4}\,s

B

2.7×104s2.7\times 10^{4}\,s

C

9×103s9\times 10^{3}\,s

D

3×103s3\times 10^{3}\,s

Answer

2.7×104s2.7\times 10^{4}\,s

Explanation

Solution

Given, l=3.0l=3.0
A=2.0×106m2A=2.0 \times 10^{-6} m ^{2}
i=30Ai=30 A
vd=ineAv_{d}=\frac{i}{n e A}
vd=38.5×1028×1.6×1019×2×106v_{d}=\frac{3}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times 2 \times 10^{-6}}
vd=1.10×104v_{d}=1.10 \times 10^{-4}
Time t=lvdt=\frac{l}{v_{d}}
=31.10×104=\frac{3}{1.10 \times 10^{-4}}
=2.7×104s=2.7 \times 10^{4} \,s